skip to main content


Search for: All records

Creators/Authors contains: "Kiman, Rocio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Wolf 359 (CN Leo, GJ 406, Gaia DR3 3864972938605115520) is a low-mass star in the fifth-closest neighboring system (2.41 pc). Because of its relative youth and proximity, Wolf 359 offers a unique opportunity to study substellar companions around M stars using infrared high-contrast imaging and radial velocity monitoring. We present the results ofMs-band (4.67μm) vector vortex coronagraphic imaging using Keck-NIRC2 and add 12 Keck-HIRES and 68 MAROON-X velocities to the radial velocity baseline. Our analysis incorporates these data alongside literature radial velocities from CARMENES, the High Accuracy Radial velocity Planet Searcher, and Keck-HIRES to rule out the existence of a close (a< 10 au) stellar or brown dwarf companion and the majority of large gas giant companions. Our survey does not refute or confirm the long-period radial velocity candidate, Wolf 359 b (P∼ 2900 days), but rules out the candidate's existence as a large gas giant (>4MJup) assuming an age of younger than 1 Gyr. We discuss the performance of our high-contrast imaging survey to aid future observers using Keck-NIRC2 in conjunction with the vortex coronagraph in theMsband and conclude by exploring the direct imaging capabilities with JWST to observe Jupiter- and Neptune-mass planets around Wolf 359.

     
    more » « less
  2. ABSTRACT

    We constrain the orbital period (Porb) distribution of low-mass detached main-sequence eclipsing binaries (EBs) with light-curves from the Zwicky Transient Facility (ZTF), which provides a well-understood selection function and sensitivity to faint stars. At short periods (Porb ≲ 2 d), binaries are predicted to evolve significantly due to magnetic braking (MB), which shrinks orbits and ultimately brings detached binaries into contact. The period distribution is thus a sensitive probe of MB. We find that the intrinsic period distribution of low-mass (0.1 ≲ M1/M⊙ < 0.9) binaries is basically flat (${\rm d}N/{\rm d}P_{\rm orb} \propto P_{\rm orb}^0$) from Porb = 10 d down to the contact limit. This is strongly inconsistent with predictions of classical MB models based on the Skumanich relation, which are widely used in binary evolution calculations and predict ${\rm d}N/{\rm d}P_{\rm orb} \propto P_{\rm orb}^{7/3}$ at short periods. The observed distributions are best reproduced by models in which the magnetic field saturates at short periods with a MB torque that scales roughly as $\dot{J}\propto P_{\rm orb}^{-1}$, as opposed to $\dot{J} \propto P_{\rm orb}^{-3}$ in the standard Skumanich law. We also find no significant difference between the period distributions of binaries containing fully and partially convective stars. Our results confirm that a saturated MB law, which was previously found to describe the spin-down of rapidly rotating isolated M dwarfs, also operates in tidally locked binaries. We advocate using saturated MB models in binary evolution calculations. Our work supports previous suggestions that MB in cataclysmic variables (CVs) is much weaker than assumed in the standard evolutionary model, unless mass transfer leads to significant additional angular momentum loss in CVs.

     
    more » « less
  3. ABSTRACT

    Brown dwarfs with well-measured masses, ages, and luminosities provide direct benchmark tests of substellar formation and evolutionary models. We report the first results from a direct imaging survey aiming to find and characterize substellar companions to nearby accelerating stars with the assistance of the Hipparcos–Gaia Catalog of Accelerations (HGCA). In this paper, we present a joint high-contrast imaging and astrometric discovery of a substellar companion to HD 176535 A, a K3.5V main-sequence star aged approximately $3.59_{-1.15}^{+0.87}$ Gyr at a distance of 36.99 ± 0.03 pc. In advance of our high-contrast imaging observations, we combined precision High Accuracy Radial velocity Planet Searcher (HARPS) Radial Velocities (RVs) and HGCA astrometry to predict the potential companion’s location and mass. We thereafter acquired two nights of KeckAO/NIRC2 direct imaging observations in the L′ band, which revealed a companion with a contrast of $\Delta L^{\prime }_p = 9.20\pm 0.06$ mag at a projected separation of ≈0.35 arcsec (≈13 au) from the host star. We revise our orbital fit by incorporating our dual-epoch relative astrometry using the open-source Markov chain Monte Carlo orbit fitting code orvara. We obtain a dynamical mass of $65.9_{-1.7}^{+2.0} M_{\rm Jup}$ that places HD 176535 B firmly in the brown dwarf regime. HD 176535 B is a new benchmark dwarf useful for constraining the evolutionary and atmospheric models of high-mass brown dwarfs. We found a luminosity of $\rm log(\mathit{ L}_{bol}/L_{\odot }) = -5.26\pm 0.07$ and a model-dependent effective temperature of 980 ± 35 K for HD 176535 B. We infer HD 176535 B to be a T dwarf from its mass, age, and luminosity. Our dynamical mass suggests that some substellar evolutionary models may be underestimating luminosity for high-mass T dwarfs. Given its angular separation and luminosity, HD 176535 B would make a promising candidate for Aperture Masking Interferometry with JWST and GRAVITY/Keck Planet Imager and Characterizer, and further spectroscopic characterization with instruments like the CHARIS/SCExAO/Subaru integral field spectrograph.

     
    more » « less
  4. Abstract

    M dwarfs are favorable targets for exoplanet detection with current instrumentation, but stellar companions can induce false positives and inhibit planet characterization. Knowledge of stellar companions is also critical to our understanding of how binary stars form and evolve. We have therefore conducted a survey of stellar companions around nearby M dwarfs, and here we present our new discoveries. Using the Differential Speckle Survey Instrument at the 4.3 m Lowell Discovery Telescope, and the similar NN-EXPLORE Exoplanet Stellar Speckle Imager at the 3.5 m WIYN telescope, we carried out a volume-limited survey of M-dwarf multiplicity to 15 parsecs, with a special emphasis on including the later M dwarfs that were overlooked in previous surveys. Additional brighter targets at larger distances were included for a total sample size of 1070 M dwarfs. Observations of these 1070 targets revealed 26 new companions; 22 of these systems were previously thought to be single. If all new discoveries are confirmed, then the number of known multiples in the sample will increase by 7.6%. Using our observed properties, as well as the parallaxes and 2MASSKmagnitudes for these objects, we calculate the projected separation, and estimate the mass ratio and component spectral types, for these systems. We report the discovery of a new M-dwarf companion to the white dwarf Wolf 672 A, which hosts a known M-dwarf companion as well, making the system trinary. We also examine the possibility that the new companion to 2MASS J13092185-2330350 is a brown dwarf. Finally, we discuss initial insights from the POKEMON survey.

     
    more » « less
  5. Abstract

    We present WDJ220838.73+454434.04 (hereafter WD2208+454), a wide, co-moving white dwarf companion to the eclipsing binary system, AR Lacertae. The companion was discovered through the Backyard Worlds: Planet 9 citizen science collaboration. It has a separation of 21.″9 on the sky from the central eclipsing pair, translating to a projected separation of ∼930 au. We present a review of the physical properties and orbital parameters of this new addition to the system.

     
    more » « less
  6. Abstract

    We present the discovery of 34 comoving systems containing an ultracool dwarf found by means of the NOIRLab Source Catalog (NSC) DR2. NSC’s angular resolution of ∼ 1″ allows for the detection of small separation binaries with significant proper motions. We used the catalog’s accurate proper motion measurements to identify the companions by cross-matching a previously compiled list of brown dwarf candidates with NSC DR2. The comoving pairs consist of either a very low-mass star and an ultracool companion, or a white dwarf and an ultracool companion. The estimated spectral types of the primaries are in the K and M dwarf regimes, those of the secondaries in the M, L, and T dwarf regimes. We calculated angular separations between ∼2″ and ∼ 56″, parallactic distances between ∼43 and ∼261 pc, and projected physical separations between ∼169 and ∼8487 au. The lowest measured total proper motion is 97 mas yr−1, with the highest 314 mas yr−1. Tangential velocities range from ∼23 to ∼187 km s−1. We also determined comoving probabilities, estimated mass ratios, and calculated binding energies for each system. We found no indication of possible binarity for any component of the 34 systems in the published literature. The discovered systems can contribute to the further study of the formation and evolution of low-mass systems as well as to the characterization of cool substellar objects.

     
    more » « less
  7. null (Ed.)
  8. null (Ed.)