skip to main content


Search for: All records

Creators/Authors contains: "Ko, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Element-calcium ratios in the skeleton of cold-water coral Desmophyllum dianthus represent potential archives for paleo-reconstruction of several ocean properties including temperature and nutrient concentrations. However, relatively large uncertainties in these proxy calibrations and heterogeneity in the skeletal composition have limited its application to date. We address these issues by analyzing corals cultured under systematically varied seawater conditions (phosphate, barium, temperature, pH, feeding frequency) over a two-year period, and refine the calibration of P/Ca, Ba/Ca, U/Ca, and Li/Mg proxies for seawater phosphate, barium, carbonate ion concentration, and temperature, respectively. Composition of the corals is determined using laser-ablation ICPMS, with robust plasma conditions established using the Normalized Argon Index [1], and proxy element incorporation is evaluated for influences of temperature, pH, and feeding frequency. The aragonite precipitated during the stages of the culturing experiment is identified using fluorescent and geochemical labelling of the skeleton through calcein and lead isotopes, respectively. This approach allows us to resolve monthly and annual increments in these slow growing (1-2mm/year) organisms, and also to evaluate the influence of calcification rate on the composition. We address the issue of heterogeneity by adapting methods for LA-ICPMS imaging to create macroscale images to reveal the full pattern of skeletogenesis and related compositional variability of D. dianthus. Preliminary images suggest that heterogeneity stems from the asymmetric precipitation of aragonite, and from centers of calcification (also known as early mineralization zones) that complicate the interpretation of elemental signals throughout the skeleton, but also help to identify new skeletal regions suitable for proxy measurement. Finally, we also discuss the role of endolithic organisms in some of these specimens. [1] Fietzke, J. & Frische, M. (2016), J. Anal. At. Spectrom. 31, 234–244. 
    more » « less
  2. Free, publicly-accessible full text available December 1, 2024
  3. Free, publicly-accessible full text available November 1, 2024
  4. Free, publicly-accessible full text available November 1, 2024
  5. Abstract

    A description is presented of the algorithms used to reconstruct energy deposited in the CMS hadron calorimeter during Run 2 (2015–2018) of the LHC. During Run 2, the characteristic bunch-crossing spacing for proton-proton collisions was 25 ns, which resulted in overlapping signals from adjacent crossings. The energy corresponding to a particular bunch crossing of interest is estimated using the known pulse shapes of energy depositions in the calorimeter, which are measured as functions of both energy and time. A variety of algorithms were developed to mitigate the effects of adjacent bunch crossings on local energy reconstruction in the hadron calorimeter in Run 2, and their performance is compared.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  6. Free, publicly-accessible full text available November 1, 2024
  7. Free, publicly-accessible full text available November 1, 2024
  8. Abstract

    A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at$${\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V}}$$s=13TeVby the CMS experiment at the LHC, corresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$fb-1. The 95% confidence level upper limit set on the branching fraction of the 125$$\,\text {Ge}\hspace{-.08em}\text {V}$$GeVHiggs boson to invisible particles,$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$B(Hinv), is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$B(Hinv)searches carried out at$${\sqrt{s}=7}$$s=7, 8, and 13$$\,\text {Te}\hspace{-.08em}\text {V}$$TeVin complementary production modes. The combined upper limit at 95% confidence level on$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$B(Hinv)is 0.15 (0.08 expected).

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  9. Free, publicly-accessible full text available October 1, 2024
  10. Free, publicly-accessible full text available October 1, 2024