skip to main content


Search for: All records

Creators/Authors contains: "Kohl, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We propose a new measurement of the ratio of positron-proton to electron-proton elastic scattering at DESY. The purpose is to determine the contributions beyond single-photon exchange, which are essential for the Quantum Electrodynamic (QED) description of the most fundamental process in hadronic physics. By utilizing a 20 cm long liquid hydrogen target in conjunction with the extracted beam from the DESY synchrotron, we can achieve an average luminosity of$$2.12\times 10^{35}$$2.12×1035 cm$$^{-2}\cdot $$-2·s$$^{-1}$$-1 ($$\approx 200$$200times the luminosity achieved by OLYMPUS). The proposed two-photon exchange experiment (TPEX) entails a commissioning run at a beam energy of 2 GeV, followed by measurements at 3 GeV, thereby providing new data up to$$Q^2=4.6$$Q2=4.6 (GeV/c)$$^2$$2(twice the range of current measurements). We present and discuss the proposed experimental setup, run plan, and expectations.

     
    more » « less
  2. Free, publicly-accessible full text available January 1, 2025
  3. Free, publicly-accessible full text available August 1, 2024
  4. Abstract The search for a dark photon holds considerable interest in the physics community. Such a force carrier would begin to illuminate the dark sector. Many experiments have searched for such a particle, but so far it has proven elusive. In recent years the concept of a low mass dark photon has gained popularity in the physics community. Of particular recent interest is the 8 Be and 4 He anomaly, which could be explained by a new fifth force carrier with a mass of 17 MeV/ c 2 . The proposed Darklight experiment would search for this potential low mass force carrier at ARIEL in the 10-20 MeV/ c 2 e + e − invariant mass range. This proceeding will focus on the experimental design and physics case of the Darklight experiment. 
    more » « less
  5. Free, publicly-accessible full text available September 1, 2024
  6. Free, publicly-accessible full text available August 1, 2024