skip to main content


Search for: All records

Creators/Authors contains: "Kohlbrenner, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 9, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Last-Level Cache (LLC) attacks typically exploit timing side channels in hardware, and thus rely heavily on timers for their operation. Many proposed defenses against such side-channel attacks capitalize on this reliance. This paper presents PRIME+ABORT, a new cache attack which bypasses these defenses by not depending on timers for its function. Instead of a timing side channel, PRIME+ABORT leverages the Intel TSX hardware widely available in both server- and consumer-grade processors. This work shows that PRIME+ABORT is not only invulnerable to important classes of defenses, it also outperforms state-of-the-art LLC PRIME+PROBE attacks in both accuracy and efficiency, having a maximum detection speed (in events per second) 3× higher than LLC PRIME+PROBE on Intel’s Skylake architecture while producing fewer false positives. 
    more » « less