skip to main content


Search for: All records

Creators/Authors contains: "Koopmann, Rebecca A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The baryonic Tully–Fisher relation (BTFR) has applications in galaxy evolution as a test bed for the galaxy–halo connection and in observational cosmology as a redshift-independent secondary distance indicator. This analysis leverages the 31,000+ galaxy Arecibo Legacy Fast ALFA (AreciboL-band Feed Array) Survey (ALFALFA) sample—which provides redshifts, velocity widths, and Hicontent for a large number of gas-bearing galaxies in the local universe—to fit and test an extensive local universe BTFR. The fiducial relation is fit using a 3000-galaxy subsample of ALFALFA, and is shown to be consistent with the full sample. This BTFR is designed to be as inclusive of ALFALFA and comparable samples as possible. Velocity widths measured via an automated method andMbproxies extracted from survey data can be uniformly and efficiently measured for other samples, giving this analysis broad applicability. We also investigate the role of sample demographics in determining the best-fit relation. We find that the best-fit relations are changed significantly by changes to the sample mass range and to second order by changes to mass sampling, gas fraction, different stellar mass and velocity width measurements. We use a subset of ALFALFA with demographics that reflect the full sample to measure a robust BTFR slope of 3.30 ± 0.06. We apply this relation and estimate source distances, finding general agreement with flow-model distances as well as average distance uncertainties of ∼0.17 dex for the full ALFALFA sample. We demonstrate the utility of these distance estimates by applying them to a sample of sources in the Virgo vicinity, recovering signatures of infall consistent with previous work.

     
    more » « less
  2. Abstract Virgo is the nearest galaxy cluster; it is thus ideal for studies of galaxy evolution in dense environments in the local universe. It is embedded in a complex filamentary network of galaxies and groups, which represents the skeleton of the large-scale Laniakea supercluster. Here we assemble a comprehensive catalog of galaxies extending up to ∼12 virial radii in projection from Virgo to revisit the cosmic-web structure around it. This work is the foundation of a series of papers that will investigate the multiwavelength properties of galaxies in the cosmic web around Virgo. We match spectroscopically confirmed sources from several databases and surveys including HyperLeda, NASA Sloan Atlas, NASA/IPAC Extragalactic Database, and ALFALFA. The sample consists of ∼7000 galaxies. By exploiting a tomographic approach, we identify 13 filaments, spanning several megaparsecs in length. Long >17 h –1 Mpc filaments, tend to be thin (<1 h –1 Mpc in radius) and with a low-density contrast (<5), while shorter filaments show a larger scatter in their structural properties. Overall, we find that filaments are a transitioning environment between the field and cluster in terms of local densities, galaxy morphologies, and fraction of barred galaxies. Denser filaments have a higher fraction of early-type galaxies, suggesting that the morphology–density relation is already in place in the filaments, before galaxies fall into the cluster itself. We release the full catalog of galaxies around Virgo and their associated properties. 
    more » « less
  3. ABSTRACT

    We present SAMI-H i, a survey of the atomic hydrogen content of 296 galaxies with integral field spectroscopy available from the SAMI Galaxy Survey. The sample spans nearly 4 dex in stellar mass ($M_\star = 10^{7.4}-10^{11.1}~ \rm M_\odot$), redshift z < 0.06, and includes new Arecibo observations of 153 galaxies, for which we release catalogues and H i spectra. We use these data to compare the rotational velocities obtained from optical and radio observations and to show how systematic differences affect the slope and scatter of the stellar-mass and baryonic Tully–Fisher relations. Specifically, we show that $\rm H\alpha$ rotational velocities measured in the inner parts of galaxies (1.3 effective radii in this work) systematically underestimate H i global measurements, with H i/$\rm H\alpha$ velocity ratios that increase at low stellar masses, where rotation curves are typically still rising and $\rm H\alpha$ measurements do not reach their plateau. As a result, the $\rm H\alpha$ stellar mass Tully–Fisher relation is steeper (when M⋆ is the independent variable) and has larger scatter than its H i counterpart. Interestingly, we confirm the presence of a small fraction of low-mass outliers of the $\rm H\alpha$ relation that are not present when H i velocity widths are used and are not explained by ‘aperture effects’. These appear to be highly disturbed systems for which $\rm H\alpha$ widths do not provide a reliable estimate of the rotational velocity. Our analysis reaffirms the importance of taking into account differences in velocity definitions as well as tracers used when interpreting offsets from the Tully–Fisher relation, at both low and high redshifts and when comparing with simulations.

     
    more » « less
  4. null (Ed.)
  5. This White Paper highlights the role Primarily Undergraduate Institutions (PUIs) play within the astronomy profession, addressing issues related to employment, resources and support, research opportunities and productivity, and educational and societal impacts. 
    more » « less
  6. The Arecibo Pisces-Perseus Supercluster Survey (APPSS) will provide strong observational constraints on the mass-infall rate onto the main filament of the Pisces-Perseus Supercluster. The survey data consist of HI emission-line spectra of cluster galaxy candidates, obtained primarily at the Arecibo Observatory (with ALFA as part of the ALFALFA Survey and with the L-Band Wide receiver as part of APPSS observations). Here we present the details of the data reduction process and spectral-analysis techniques used to determine if a galaxy candidate is at a velocity consistent with the Supercluster, as well as the detected HI-flux and rotational velocity of the galaxy, which will be used to estimate the corresponding HI-mass. We discuss the results of a preliminary analysis on a subset of the APPSS sample, corresponding to 98 galaxies located within ~1.5° of DEC = +35.0°, with 65 possible detections. We also highlight several interesting emission-line features and galaxies discovered during the reduction and analysis process and layout the future of the APPSS project. This work has been supported by NSF grants AST-1211005 and AST-1637339. 
    more » « less
  7. As star-forming dwarf irregulars and faint spirals fall onto a cluster, their gas content is easily and quickly removed by ram-pressure stripping or other cluster forces. Residual signs of star formation cease within 100 Myr, and only after approximately 1 Gyr do their optical features transition to elliptical.Despite this, ALFALFA has uncovered a population of three “red and dead” dwarf ellipticals in the Virgo Cluster which still have detectable reservoirs of HI. These dwarf ellipticals are extremely gas-rich—as gas-rich as the cluster’s star-forming dwarf irregulars (Hallenbeck et al. 2012). Where does this gas come from? We consider two possibilities. First, that the gas is recently acquired, and has not yet had time to form stars. Second, that the gas is primordial, and has been disrupted from being able to form stars during the current epoch.We present deep optical (using CFHT and KPNO) and HI (Arecibo and VLA) observations of this sample to demonstrate that this gas is primordial. These observations show that all three galaxies have exponentially decreasing profiles characteristic of dwarf ellipticals and that their rotation velocities are extremely low. However, like more massive elliptical galaxies with HI, these dwarf galaxies show irregular optical morphology. For one target, VCC 190, we additionally observe an HI tail consistent with a recent interaction with the massive spiral galaxy NGC 4224. 
    more » « less
  8. The Arecibo Pisces-Perseus Supercluster Survey (APPSS) aims to exploit the Baryonic Tully-Fisher Relation to derive distances and peculiar velocities of galaxies in and near the main ridge of the Pisces-Perseus Supercluster (PPS), one of the most prominent features of the Cosmic Web in the nearby Universe. The sample of galaxies contains ~ 600 sources in the low-mass range (8 < log MHI / M⊙ < 9). The source selection was based on the ALFALFA HI survey, SDSS and GALEX photometric data. The sample galaxies have HI masses just below the ALFALFA detection threshold, and were selected to be blue disk systems (low surface brightness sources from optical photometry data). The HI data were obtained at the Arecibo Observatory between the years 2015 and 2016. With this sample, the nature of the galaxy population in and around the PPS will be investigated. The HIMF to log MHI ~ 8.0 along the PPS filament will be measured and using the Tully-Fisher relation it will be possible to make a robust measurement of the infall and backflow onto the filamentary structure.APPSS is collaborative project between more than 10 Undergraduate ALFALFA Team institutions in which each group contributes to the analysis of a subset of the HI PPS data. In this poster, we will present the contributions of the U.P.R. team to the APPSS project. We will show the procedure used for the Arecibo HI data analysis, including some examples, and will show our preliminary results. 
    more » « less
  9. We report on results of the Arecibo Pisces-Perseus Supercluster Survey (APPSS) along and near declination 23 degrees. APPSS is a targeted HI survey using the L-band wide receiever at the NAIC Arecibo observatory. It is designed to detect infall onto the Pisces-Perseus Supercluster (PPS) using a statistical comparison to models of the peculiar velocity flow field. We have investigated a subset of 67 galaxies in the PPS sky region along declination 23 degrees. For detected galaxies we have determined their systemic velocity, line width, integrated flux density, and HI mass. We will illustrate HI spectral properties of interesting detections in our region and will compare them with available optical and UV data from SDSS and the GALEX archives. We will also describe the data reduction process and the ongoing collaboration among faculty and undergraduate students of the Undergraduate ALFALFA Team. 
    more » « less