skip to main content


Search for: All records

Creators/Authors contains: "Kooyers, Nicholas J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Heat waves are becoming more frequent and intense with climate change, but the demographic and evolutionary consequences of heat waves are rarely investigated in herbaceous plant species. We examine the consequences of a short but extreme heat wave in Oregon populations of the common yellow monkeyflower (Mimulus guttatus) by leveraging a common garden experiment planted with range‐wide populations and observational studies of 11 local populations. In the common garden, 89% of seedlings died during the heat wave including >96% of seedlings from geographically local populations. Some populations from hotter and drier environments had higher fitness, however, others from comparable environments performed poorly. Observational studies of local natural populations drastically differed in the consequences of the heat wave—one population was completely extirpated and nearly half had a >50% decrease in fitness. However, a few populations hadgreaterfitness during the heat wave year. Differences in mortality corresponded to the impact of the heat wave on soil moisture—retention of soil moisture throughout the heat wave led to greater survivorship. Our results suggest that not all populations experience the same intensity or degree of mortality during extreme events and such heterogeneity could be important for genetic rescue or to facilitate the distribution of adaptive variants throughout the region.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Abstract Premise Annual plants often exhibit drought‐escape and avoidance strategies to cope with limited water availability. Determining the extent of variation and factors underlying the evolution of divergent strategies is necessary for determining population responses to more frequent and severe droughts. Methods We leveraged five Mimulus guttatus populations collected across an aridity gradient within manipulative drought and quantitative genetics experiments to examine constitutive and terminal‐drought induced responses in drought resistance traits. Results Populations varied considerably in drought‐escape‐ and drought‐avoidance‐associated traits. The most mesic population demonstrated a unique resource conservative strategy. Xeric populations exhibited extreme plasticity when exposed to terminal drought that included flowering earlier at shorter heights, increasing water‐use efficiency, and shifting C:N ratios. However, plasticity responses also differed between populations, with two populations slowing growth rates and flowering at earlier nodes and another population increasing growth rate. While nearly all traits were heritable, phenotypic correlations differed substantially between treatments and often, populations. Conclusions Our results suggest drought resistance strategies of populations may be finely adapted to local patterns of water availability. Substantial plastic responses suggest that xeric populations can already acclimate to drought through plasticity, but populations not frequently exposed to drought may be more vulnerable. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Although chemical defenses and herbivore pressure are widely established as key targets and agents of selection, their roles in local adaptation and determining potential evolutionary responses to changing climates are often neglected. Here, we explore fitness differences between 11 rangewide M. guttatus populations in a field common garden experiment and assess the agents and targets of selection driving relative fitness patterns. We use piecewise structural equation models to disentangle associations between chemical defenses, (phenylpropanoid glycosides; PPGs), and life history traits with herbivory and fitness. While the historical environment of populations is not predictive of fitness differences between populations, >90% of variation in fitness can be predicted by the flowering time and foliar PPG defense arsenal of a population. Piecewise structural equation models indicate that life history traits, particularly earlier flowering time, are strongly and directly linked to fitness. However, herbivory, particularly fruit predation, is also an important agent of selection that creates indirect links between fitness and both chemical defenses and life history traits. Our results emphasize the multivariate nature of the agents and targets of selections in producing adaptation and suggest that future responses to selection must navigate a complex fitness landscape. 
    more » « less
  4. Abstract

    Although chemical defenses and herbivore pressure are widely established as key targets and agents of selection, their roles in local adaptation and determining potential evolutionary responses to changing climates are often neglected. Here, we explore fitness differences between 11 rangewide M. guttatus populations in a field common garden experiment and assess the agents and targets of selection driving relative fitness patterns. We use piecewise structural equation models to disentangle associations between chemical defenses, (phenylpropanoid glycosides; PPGs), and life history traits with herbivory and fitness. While the historical environment of populations is not predictive of fitness differences between populations, >90% of variation in fitness can be predicted by the flowering time and foliar PPG defense arsenal of a population. Piecewise structural equation models indicate that life history traits, particularly earlier flowering time, are strongly and directly linked to fitness. However, herbivory, particularly fruit predation, is also an important agent of selection that creates indirect links between fitness and both chemical defenses and life history traits. Our results emphasize the multivariate nature of the agents and targets of selections in producing adaptation and suggest that future responses to selection must navigate a complex fitness landscape.

     
    more » « less
  5. Abstract

    White clover (Trifolium repens L.; Fabaceae) is an important forage and cover crop in agricultural pastures around the world and is increasingly used in evolutionary ecology and genetics to understand the genetic basis of adaptation. Historically, improvements in white clover breeding practices and assessments of genetic variation in nature have been hampered by a lack of high-quality genomic resources for this species, owing in part to its high heterozygosity and allotetraploid hybrid origin. Here, we use PacBio HiFi and chromosome conformation capture (Omni-C) technologies to generate a chromosome-level, haplotype-resolved genome assembly for white clover totaling 998 Mbp (scaffold N50 = 59.3 Mbp) and 1 Gbp (scaffold N50 = 58.6 Mbp) for haplotypes 1 and 2, respectively, with each haplotype arranged into 16 chromosomes (8 per subgenome). We additionally provide a functionally annotated haploid mapping assembly (968 Mbp, scaffold N50 = 59.9 Mbp), which drastically improves on the existing reference assembly in both contiguity and assembly accuracy. We annotated 78,174 protein-coding genes, resulting in protein BUSCO completeness scores of 99.6% and 99.3% against the embryophyta_odb10 and fabales_odb10 lineage datasets, respectively.

     
    more » « less
  6. Dozois, Charles M. (Ed.)
    ABSTRACT Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) is an emerging cause of hospital-associated urinary tract infections (UTI), especially in catheterized individuals. Despite being rare, MRSA UTI are prone to potentially life-threatening exacerbations such as bacteremia that can be refractory to routine antibiotic therapy. To delineate the molecular mechanisms governing MRSA urinary pathogenesis, we exposed three S. aureus clinical isolates, including two MRSA strains, to human urine for 2 h and analyzed virulence characteristics and changes in gene expression. The in vitro virulence assays showed that human urine rapidly alters adherence to human bladder epithelial cells and fibronectin, hemolysis of sheep red blood cells (RBCs), and surface hydrophobicity in a staphylococcal strain-specific manner. In addition, transcriptome sequencing (RNA-Seq) analysis of uropathogenic strain MRSA-1369 revealed that 2-h-long exposure to human urine alters MRSA transcriptome by modifying expression of genes encoding enzymes catalyzing metabolic pathways, virulence factors, and transcriptional regulators. In summary, our results provide important insights into how human urine specifically and rapidly alters MRSA physiology and facilitates MRSA survival in the nutrient-limiting and hostile urinary microenvironment. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is an uncommon cause of urinary tract infections (UTI) in the general population. However, it is important to understand MRSA pathophysiology in the urinary tract because isolation of MRSA in urine samples often precedes potentially life-threatening MRSA bacteremia. In this report, we describe how exposure to human urine alters MRSA global gene expression and virulence. We hypothesize that these alterations may aid MRSA in acclimating to the nutrient-limiting, immunologically hostile conditions within the urinary tract leading to MRSA UTI. 
    more » « less
  7. Abstract Determining how adaptive combinations of traits arose requires understanding the prevalence and scope of genetic constraints. Frequently observed phenotypic correlations between plant growth, defenses, and/or reproductive timing have led researchers to suggest that pleiotropy or strong genetic linkage between variants affecting independent traits is pervasive. Alternatively, these correlations could arise via independent mutations in different genes for each trait and extensive correlational selection. Here we evaluate these alternatives by conducting a quantitative trait loci (QTL) mapping experiment involving a cross between 2 populations of common monkeyflower (Mimulus guttatus) that differ in growth rate as well as total concentration and arsenal composition of plant defense compounds, phenylpropanoid glycosides (PPGs). We find no evidence that pleiotropy underlies correlations between defense and growth rate. However, there is a strong genetic correlation between levels of total PPGs and flowering time that is largely attributable to a single shared QTL. While this result suggests a role for pleiotropy/close linkage, several other QTLs also contribute to variation in total PPGs. Additionally, divergent PPG arsenals are influenced by a number of smaller-effect QTLs that each underlie variation in 1 or 2 PPGs. This result indicates that chemical defense arsenals can be finely adapted to biotic environments despite sharing a common biochemical precursor. Together, our results show correlations between defense and life-history traits are influenced by pleiotropy or genetic linkage, but genetic constraints may have limited impact on future evolutionary responses, as a substantial proportion of variation in each trait is controlled by independent loci. 
    more » « less
  8. null (Ed.)