skip to main content


Search for: All records

Creators/Authors contains: "Kopp, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Precise, high-cadence, long-term records of stellar spectral variability at different temporal scales lead to better understanding of a wide variety of phenomena including stellar atmospheres and dynamos, convective motions, and rotational periods. Here, we investigate the variability of solar Balmer lines (Hα,β,γ,δ) observed by space-borne radiometers (OSIRIS, SCIAMACHY, OMI, and GOME-2), combining these precise, long-term observations with high-resolution data from the ground-based NSO/ISS spectrograph. We relate the detected variability to the appearance of magnetic features on the solar disk. We find that on solar-rotational timescales (about 1 month), the Balmer line activity indices (defined as line-core to line-wing ratios) closely follow variations in the total solar irradiance (which is predominantly photospheric), thus frequently (specifically, during passages of sunspot groups) deviating from behavior of activity indices that track chromospheric activity levels. On longer timescales, the correlation with chromospheric indices increases, with periods of low correlation or even anticorrelation found at intermediate timescales. Comparison of these observations with estimates from semiempirical irradiance reconstructions helps quantify the contributions of different magnetic and quiet features. We conclude that both the lower sensitivity to network and in part the higher sensitivity to filaments and prominences, may result in complex, time-dependent relationships between Balmer and other chromospheric indices observed for the Sun and solar-like stars. The fact that core and wings contribute in a similar manner to the variability, and current knowledge of Balmer-lines formation in stellar atmospheres, supports the notion that Balmer line core-to-wing ratio indices behave more like photospheric rather than chromospheric indices.

     
    more » « less
  2. Free, publicly-accessible full text available December 1, 2024
  3. Free, publicly-accessible full text available November 1, 2024
  4. Free, publicly-accessible full text available November 1, 2024
  5. Abstract

    A description is presented of the algorithms used to reconstruct energy deposited in the CMS hadron calorimeter during Run 2 (2015–2018) of the LHC. During Run 2, the characteristic bunch-crossing spacing for proton-proton collisions was 25 ns, which resulted in overlapping signals from adjacent crossings. The energy corresponding to a particular bunch crossing of interest is estimated using the known pulse shapes of energy depositions in the calorimeter, which are measured as functions of both energy and time. A variety of algorithms were developed to mitigate the effects of adjacent bunch crossings on local energy reconstruction in the hadron calorimeter in Run 2, and their performance is compared.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  6. Free, publicly-accessible full text available November 1, 2024
  7. Free, publicly-accessible full text available November 1, 2024
  8. Abstract

    A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at$${\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V}}$$s=13TeVby the CMS experiment at the LHC, corresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$fb-1. The 95% confidence level upper limit set on the branching fraction of the 125$$\,\text {Ge}\hspace{-.08em}\text {V}$$GeVHiggs boson to invisible particles,$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$B(Hinv), is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$B(Hinv)searches carried out at$${\sqrt{s}=7}$$s=7, 8, and 13$$\,\text {Te}\hspace{-.08em}\text {V}$$TeVin complementary production modes. The combined upper limit at 95% confidence level on$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$B(Hinv)is 0.15 (0.08 expected).

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  9. Free, publicly-accessible full text available October 1, 2024