skip to main content


Search for: All records

Creators/Authors contains: "Korgel, Brian A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Cesium methylammonium lead iodide (CsxMA1−xPbI3) nanocrystals were obtained with a wide range of A‐site Cs‐MA compositions by post‐synthetic, room temperature cation exchange between CsPbI3nanocrystals and MAPbI3nanocrystals. The alloyed CsxMA1−xPbI3nanocrystals retain their photoactive perovskite phase with incorporated Cs content,x, as high as 0.74 and the expected composition‐tunable photoluminescence (PL). Excess methylammonium oleate from the reaction mixture in the MAPbI3nanocrystal dispersions was necessary to obtain fast Cs‐MA cation exchange. The phase transformation and degradation kinetics of films of CsxMA1−xPbI3nanocrystals were measured and modeled using an Avrami expression. The transformation kinetics were significantly slower than those of the parent CsPbI3and MAPbI3nanocrystals, with Avrami rate constants,k, at least an order of magnitude smaller. These results affirm that A‐site cation alloying is a promising strategy for stabilizing iodide‐based perovskites.

     
    more » « less
  2. Abstract

    Cesium methylammonium lead iodide (CsxMA1−xPbI3) nanocrystals were obtained with a wide range of A‐site Cs‐MA compositions by post‐synthetic, room temperature cation exchange between CsPbI3nanocrystals and MAPbI3nanocrystals. The alloyed CsxMA1−xPbI3nanocrystals retain their photoactive perovskite phase with incorporated Cs content,x, as high as 0.74 and the expected composition‐tunable photoluminescence (PL). Excess methylammonium oleate from the reaction mixture in the MAPbI3nanocrystal dispersions was necessary to obtain fast Cs‐MA cation exchange. The phase transformation and degradation kinetics of films of CsxMA1−xPbI3nanocrystals were measured and modeled using an Avrami expression. The transformation kinetics were significantly slower than those of the parent CsPbI3and MAPbI3nanocrystals, with Avrami rate constants,k, at least an order of magnitude smaller. These results affirm that A‐site cation alloying is a promising strategy for stabilizing iodide‐based perovskites.

     
    more » « less
  3. null (Ed.)
    Abstract All-dielectric nanostructures have recently opened exciting opportunities for functional nanophotonics, owing to their strong optical resonances along with low material loss in the near-infrared range. Pushing these concepts to the visible range is hindered by their larger absorption coefficient, thus encouraging the search for alternative dielectrics for nanophotonics. Here, we employ bandgap engineering to synthesize hydrogenated amorphous Si nanoparticles (a-Si:H NPs) offering ideal features for functional nanophotonics. We observe significant material loss suppression in a-Si:H NPs in the visible range caused by hydrogenation-induced bandgap renormalization, producing strong higher-order resonant modes in single NPs with Q factors up to ~100 in the visible and near-IR range. We also realize highly tunable all-dielectric meta-atoms by coupling a-Si:H NPs to photochromic spiropyran molecules. ~70% reversible all-optical tuning of light scattering at the higher-order resonant mode under a low incident light intensity is demonstrated. Our results promote the development of high-efficiency visible nanophotonic devices. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)