skip to main content


Search for: All records

Creators/Authors contains: "Kotera, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Free, publicly-accessible full text available April 1, 2024
  3. Free, publicly-accessible full text available July 1, 2024
  4. Abstract

    We present the results of a search for core-collapse supernova neutrinos, using long-term KamLAND data from 2002 March 9 to 2020 April 25. We focus on the electron antineutrinos emitted from supernovae in the energy range of 1.8–111 MeV. Supernovae will make a neutrino event cluster with the duration of ∼10 s in the KamLAND data. We find no neutrino clusters and give the upper limit on the supernova rate to be 0.15 yr−1with a 90% confidence level. The detectable range, which corresponds to a >95% detection probability, is 40–59 kpc and 65–81 kpc for core-collapse supernovae and failed core-collapse supernovae, respectively. This paper proposes to convert the supernova rate obtained by the neutrino observation to the Galactic star formation rate. Assuming a modified Salpeter-type initial mass function, the upper limit on the Galactic star formation rate is <(17.5–22.7)Myr−1with a 90% confidence level.

     
    more » « less
  5. Abstract

    The decay of the primordial isotopes238U,235U,232Th, and40K has contributed to the terrestrial heat budget throughout the Earth's history. Hence, the individual abundance of those isotopes are key parameters in reconstructing contemporary Earth models. The geoneutrinos produced by the radioactive decays of uranium and thorium have been observed with the Kamioka Liquid‐Scintillator Antineutrino Detector (KamLAND). Those measurements have been improved with more than 18‐year observation time, and improvement in detector background levels mainly with an 8‐year nearly reactor‐free period, which now permit spectroscopy with geoneutrinos. Our results yield the first constraint on both uranium and thorium heat contributions. The KamLAND result is consistent with geochemical estimations based on elemental abundances of chondritic meteorites and mantle peridotites. The High‐Q model is disfavored at 99.76% C.L. and a fully radiogenic model is excluded at 5.2σassuming a homogeneous heat producing element distribution in the mantle.

     
    more » « less