skip to main content


Search for: All records

Creators/Authors contains: "Krolewski, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The joint analysis of different cosmological probes, such as galaxy clustering and weak lensing, can potentially yield invaluable insights into the nature of the primordial Universe, dark energy, and dark matter. However, the development of high-fidelity theoretical models is a necessary stepping stone. Here, we present public high-resolution weak lensing maps on the light-cone, generated using the N-body simulation suite abacussummit, and accompanying weak lensing mock catalogues, tuned to the Early Data Release small-scale clustering measurements of the Dark Energy Spectroscopic Instrument. Available in this release are maps of the cosmic shear, deflection angle, and convergence fields at source redshifts ranging from z = 0.15 to 2.45 as well as cosmic microwave background convergence maps for each of the 25 base-resolution simulations ($L_{\rm box} = 2000\, h^{-1}\, {\rm Mpc}$ and Npart = 69123) as well as for the two huge simulations ($L_{\rm box} = 7500\, h^{-1}\, {\rm Mpc}$ and Npart = 86403) at the fiducial abacussummit cosmology. The pixel resolution of each map is 0.21 arcmin, corresponding to a healpix Nside of 16 384. The sky coverage of the base simulations is an octant until z ≈ 0.8 (decreasing to about 1800 deg2 at z ≈ 2.4), whereas the huge simulations offer full-sky coverage until z ≈ 2.2. Mock lensing source catalogues are sampled matching the ensemble properties of the Kilo-Degree Survey, Dark Energy Survey, and Hyper Suprime-Cam data sets. The mock catalogues are validated against theoretical predictions for various clustering and lensing statistics, such as correlation multipoles, galaxy–shear, and shear–shear, showing excellent agreement. All products can be downloaded via a Globus endpoint (see Data Availability section).

     
    more » « less
  2. Faint star-forming galaxies at z∼2–3 can be used as alternative background sources to probe the Lyα forest in addition to quasars, yielding high sightline densities that enable 3D tomographic reconstruction of the foreground absorption field. Here, we present the first data release from the COSMOS Lyα Mapping And Tomography Observations (CLAMATO) Survey, which was conducted with the LRIS spectrograph on the Keck I telescope. Over an observational footprint of 0.157 deg2 within the COSMOS field, we used 240 galaxies and quasars at 2.17<z<3.00, with a mean comoving transverse separation of 2.37 h-1 Mpc, as background sources probing the foreground Lyα forest absorption at 2.05<z<2.55. The Lyα forest data was then used to create a Wiener- filtered tomographic reconstruction over a comoving volume of 3.15 ́ 105 h-3 Mpc3 with an effective smoothing scale of 2.5 h-1 Mpc. In addition to traditional figures, this map is also presented as a virtual-reality visualization and manipulable interactive figure. We see large overdensities and underdensities that visually agree with the distribution of coeval galaxies from spectroscopic redshift surveys in the same field, including overdensities associated with several recently discovered galaxy protoclusters in the volume. Quantitatively, the map signal-to- noise is S Nwiener » 3.4 over a 3 h−1Mpc top-hat kernel based on the variances estimated from the Wiener filter. This data release includes the redshift catalog, reduced spectra, extracted Lyα forest pixel data, and reconstructed tomographic map of the absorption. These can be downloaded from Zenodo 
    more » « less