skip to main content


Search for: All records

Creators/Authors contains: "Kumar, Mukesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Irrigation expansion is often posed as a promising option to enhance food security. Here, we assess the influence of expansion of irrigation, primarily in rural areas of the contiguous United States (CONUS), on the intensification and spatial proliferation of freshwater scarcity. Results show rain-fed to irrigation-fed (RFtoIF) transition will result in an additional 169.6 million hectares or 22% of the total CONUS land area facing moderate or severe water scarcity. Analysis of just the 53 large urban clusters with 146 million residents shows that the transition will result in 97 million urban population facing water scarcity for at least one month per year on average versus 82 million before the irrigation expansion. Notably, none of the six large urban regions facing an increase in scarcity with RFtoIF transition are located in arid regions in part because the magnitude of impact is dependent on multiple factors including local water demand, abstractions in the river upstream, and the buffering capacity of ancillary water sources to cities. For these reasons, areas with higher population and industrialization also generally experience a relatively smaller change in scarcity than regions with lower water demand. While the exact magnitude of impacts are subject to simulation uncertainties despite efforts to exercise due diligence, the study unambiguously underscores the need for strategies aimed at boosting crop productivity to incorporate the effects on water availability throughout the entire extent of the flow networks, instead of solely focusing on the local level. The results further highlight that if irrigation expansion is poorly managed, it may increase urban water scarcity, thus also possibly increasing the likelihood of water conflict between urban and rural areas.

     
    more » « less
  2. Free, publicly-accessible full text available July 1, 2024
  3. Abstract

    In recent decades, irrigated agriculture has expanded dramatically over the Southeastern United States (SEUS). The trend is more likely to continue in future given the need to further improve crop productivity and its resilience against droughts, however, the impact of these SEUS land cover changes remains unknown. This study investigates how and to what extent rain-fed to irrigation-fed (RFtoIF) transition in the SEUS region modulates precipitation spatially and temporally under a severe drought meteorological condition. In this study, we perform three Weather Research Forecasting model simulations with varying degrees of irrigated crop areas with meteorological boundary conditions of a record-breaking 2007 drought in the SEUS region. Results show that the SEUS irrigation expansion reduces both the convective triggering potential and low-level humidity index through land-atmospheric interaction. This is accompanied by reduction in the height of atmospheric boundary layer (ABL)-lifting condensation level crossing and increase in the convective available potential energy. These modulations within the ABL provide a favorable condition for strong deep convection during the drought period. However, the impact on precipitation is heterogeneous, with crop areas undergoing RFtoIF transition experiencing an overall reduction in precipitation while other landcovers experiencing an increase. The reduction in precipitation over RFtoIF transitioned croplands is in part due to moisture redistribution aided by generation of an anomalous high-pressure system. The results highlight the complexity of response of precipitation to irrigation expansion in the SEUS, and underscore the need to perform spatially-explicit analysis for mitigating risks to water resources and food security.

     
    more » « less
  4. Abstract Due to the mixed distribution of buildings and vegetation, wildland-urban interface (WUI) areas are characterized by complex fuel distributions and geographical environments. The behavior of wildfires occurring in the WUI often leads to severe hazards and significant damage to man-made structures. Therefore, WUI areas warrant more attention during the wildfire season. Due to the ever-changing dynamic nature of California’s population and housing, the update frequency and resolution of WUI maps that are currently used can no longer meet the needs and challenges of wildfire management and resource allocation for suppression and mitigation efforts. Recent developments in remote sensing technology and data analysis algorithms pose new opportunities for improving WUI mapping methods. WUI areas in California were directly mapped using building footprints extracted from remote sensing data by Microsoft along with the fuel vegetation cover from the LANDFIRE dataset in this study. To accommodate the new type of datasets, we developed a threshold criteria for mapping WUI based on statistical analysis, as opposed to using more ad-hoc criteria as used in previous mapping approaches. This method removes the reliance on census data in WUI mapping, and does not require the calculation of housing density. Moreover, this approach designates the adjacent areas of each building with large and dense parcels of vegetation as WUI, which can not only refine the scope and resolution of the WUI areas to individual buildings, but also avoids zoning issues and uncertainties in housing density calculation. Besides, the new method has the capability of updating the WUI map in real-time according to the operational needs. Therefore, this method is suitable for local governments to map local WUI areas, as well as formulating detailed wildfire emergency plans, evacuation routes, and management measures. 
    more » « less
  5. Abstract

    Wetlands protect downstream waters by filtering excess nitrogen (N) generated from agricultural and urban activities. Many small ephemeral wetlands, also known as geographically isolated wetlands (GIWs), are hotspots of N retention but have received fewer legal protections due to their apparent isolation from jurisdictional waters. Here, we hypothesize that the isolation of the GIWs make them more efficient N filters, especially when considering transient hydrologic dynamics. We use a reduced complexity model with 30 years of remotely sensed monthly wetland inundation levels in 3700 GIWs across eight wetlandscapes in the US to show how consideration of transient hydrologic dynamics can increase N retention estimates by up to 130%, with greater retention magnification for the smaller wetlands. This effect is more pronounced in semi-arid systems such as the prairies in North Dakota, where transient assumptions lead to 1.8 times more retention, compared to humid landscapes like the North Carolina Pocosins where transient assumptions only lead to 1.4 times more retention. Our results highlight how GIWs have an outsized role in retaining nutrients, and this service is enhanced due to their hydrologic disconnectivity which must be protected to maintain the integrity of downstream waters.

     
    more » « less
  6. Maritime transportation is crucial to national economic development as it offers a low-cost, safe, and efficient alternative for movement of freight compared to its land or air counterparts. River and channel dredging protocols are often adopted in many ports and harbors of the world to meet the increasing demand for freight and ensure safe passage of larger vessels. However, such protocols may have unintended adverse consequences on flood risks and functioning of coastal ecosystems and thereby compromising the valuable services they provide to society and the environment. This study analyzes the compound effects of dredging protocols under a range of terrestrial and coastal flood drivers, including the effects of sea level rise (SLR) on compound flood risk, vessel navigability, and coastal wetland inundation dynamics in Mobile Bay (MB), Alabama. We develop a set of hydrodynamic simulation scenarios for a range of river flow and coastal water level regimes, SLR projections, and dredging protocols designed by the U.S. Army Corps of Engineers. We show that channel dredging helps increase bottom (‘underkeel’) clearances by a factor of 3.33 under current mean sea level and from 4.20 to 4.60 under SLR projections. We find that both low and high water surface elevations (WSEs) could be detrimental, with low WSE (< -1.22 m) hindering safe navigation whereas high WSE (> 0.87 m) triggering minor to major flooding in the surrounding urban and wetland areas. Likewise, we identify complex inundation patterns emerging from nonlinear interactions of SLR, flood drivers, and dredging protocols, and additionally estimate probability density functions (PDFs) of wetland inundation. We show that changes in mean sea level due to SLR diminish any effects of channel dredging on wetland inundation dynamics and shift the PDFs beyond pre-established thresholds for moderate and major flooding. In light of our results, we recommend the need for integrated analyses that account for compound effects on vessel navigation and wetland inundation, and provide insights into environmental-friendly solutions for increasing cargo transportation. 
    more » « less