skip to main content


Search for: All records

Creators/Authors contains: "Lahav, O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is nontrivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5 Yr (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift differences between the true and matched hosts of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Δw) due to including SNe with incorrect host galaxy matches. For SN Ia–only simulations, we find Δw= 0.0013 ± 0.0026 with constraints from the cosmic microwave background. Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Δwranges from 0.0009 to 0.0032, depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty onwfrom the DES-SN5YR sample of ∼0.03. We conclude that the bias onwfrom host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts.

     
    more » « less
  2. We present a measurement of the cross-correlation between theMagLimgalaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over ∼ 436 sq. deg of the sky. Our galaxy sample, which covers ∼ 4143 sq. deg, is divided into six redshift bins spanning the redshift range of 0.20 < z < 1.05. We adopt a blinding procedure until passing all consistency and systematics tests. After imposing scale cuts for the cross-power spectrum measurement, we reject the null hypothesis of no correlation at 9.1σ. We constrain cosmological parameters from a joint analysis of galaxy and CMB lensing-galaxy power spectra considering a flat ΛCDM model, marginalized over 23 astrophysical and systematic nuisance parameters. We find the clustering amplitude S_8 ≡ σ_8(Ω_m/0.3)^0.5 = 0.75+0.04-0.05. In addition, we constrain the linear growth of cosmic structure as a function of redshift. Our results are consistent with recent DES Y3 analyses and suggest a preference for a lower S_8 compared to results from measurements of CMB anisotropies by the Planck satellite, although at a mild level (< 2σ) of statistical significance. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is non-trivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5-Year (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift difference between the true and matched host of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Dw) due to including SNe with incorrect host galaxy matches. For SN Ia-only simulations, we find Dw = 0.0013 +/- 0.0026 with constraints from the cosmic microwave background (CMB). Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Dw ranges from 0.0009 to 0.0032 depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty on w from the DES-SN5YR sample of around 0.03. We conclude that the bias on w from host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. ABSTRACT

    Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and Planck data, where most of the contamination due to the thermal Sunyaev Zel’dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio = 7.1 and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution (S8 ≡ σ8(Ωm/0.3)0.5 = 0.782 ± 0.059) with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6×2pt analysis between DES and ACT.

     
    more » « less
  5. ABSTRACT

    Clusters of galaxies trace the most non-linear peaks in the cosmic density field. The weak gravitational lensing of background galaxies by clusters can allow us to infer their masses. However, galaxies associated with the local environment of the cluster can also be intrinsically aligned due to the local tidal gradient, contaminating any cosmology derived from the lensing signal. We measure this intrinsic alignment in Dark Energy Survey (DES) Year 1 redMaPPer clusters. We find evidence of a non-zero mean radial alignment of galaxies within clusters between redshifts 0.1–0.7. We find a significant systematic in the measured ellipticities of cluster satellite galaxies that we attribute to the central galaxy flux and other intracluster light. We attempt to correct this signal, and fit a simple model for intrinsic alignment amplitude (AIA) to the measurement, finding AIA = 0.15 ± 0.04, when excluding data near the edge of the cluster. We find a significantly stronger alignment of the central galaxy with the cluster dark matter halo at low redshift and with higher richness and central galaxy absolute magnitude (proxies for cluster mass). This is an important demonstration of the ability of large photometric data sets like DES to provide direct constraints on the intrinsic alignment of galaxies within clusters. These measurements can inform improvements to small-scale modelling and simulation of the intrinsic alignment of galaxies to help improve the separation of the intrinsic alignment signal in weak lensing studies.

     
    more » « less
  6. ABSTRACT

    Widefield surveys probe clustered scalar fields – such as galaxy counts, lensing potential, etc. – which are sensitive to different cosmological and astrophysical processes. Constraining such processes depends on the statistics that summarize the field. We explore the cumulative distribution function (CDF) as a summary of the galaxy lensing convergence field. Using a suite of N-body light-cone simulations, we show the CDFs’ constraining power is modestly better than the second and third moments, as CDFs approximately capture information from all moments. We study the practical aspects of applying CDFs to data, using the Dark Energy Survey (DES Y3) data as an example, and compute the impact of different systematics on the CDFs. The contributions from the point spread function and reduced shear approximation are $\lesssim 1~{{\ \rm per\ cent}}$ of the total signal. Source clustering effects and baryon imprints contribute 1–10 per cent. Enforcing scale cuts to limit systematics-driven biases in parameter constraints degrade these constraints a noticeable amount, and this degradation is similar for the CDFs and the moments. We detect correlations between the observed convergence field and the shape noise field at 13σ. The non-Gaussian correlations in the noise field must be modelled accurately to use the CDFs, or other statistics sensitive to all moments, as a rigorous cosmology tool.

     
    more » « less
  7. ABSTRACT

    We present an alternative calibration of the MagLim lens sample redshift distributions from the Dark Energy Survey (DES) first 3 yr of data (Y3). The new calibration is based on a combination of a self-organizing-map-based scheme and clustering redshifts to estimate redshift distributions and inherent uncertainties, which is expected to be more accurate than the original DES Y3 redshift calibration of the lens sample. We describe in detail the methodology, and validate it on simulations and discuss the main effects dominating our error budget. The new calibration is in fair agreement with the fiducial DES Y3 n(z) calibration, with only mild differences (<3σ) in the means and widths of the distributions. We study the impact of this new calibration on cosmological constraints, analysing DES Y3 galaxy clustering and galaxy–galaxy lensing measurements, assuming a Lambda cold dark matter cosmology. We obtain Ωm = 0.30 ± 0.04, σ8 = 0.81 ± 0.07, and S8 = 0.81 ± 0.04, which implies a ∼0.4σ shift in the Ω − S8 plane compared to the fiducial DES Y3 results, highlighting the importance of the redshift calibration of the lens sample in multiprobe cosmological analyses.

     
    more » « less
  8. ABSTRACT

    We present direct constraints on galaxy intrinsic alignments (IAs) using the Dark Energy Survey Year 3 (DES Y3), the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and its precursor, the Baryon Oscillation Spectroscopic Survey (BOSS). Our measurements incorporate photometric red sequence (redMaGiC) galaxies from DES with median redshift z ∼ 0.2–1.0, luminous red galaxies from eBOSS at z ∼ 0.8, and also an SDSS-III BOSS CMASS sample at z ∼ 0.5. We measure two-point IA correlations, which we fit using a model that includes lensing, magnification, and photometric redshift error. Fitting on scales 6 Mpc h−1 < rp < 70 Mpc h−1, we make a detection of IAs in each sample, at 5σ–22σ (assuming a simple one-parameter model for IAs). Using these red samples, we measure the IA–luminosity relation. Our results are statistically consistent with previous results, but offer a significant improvement in constraining power, particularly at low luminosity. With this improved precision, we see detectable dependence on colour between broadly defined red samples. It is likely that a more sophisticated approach than a binary red/blue split, which jointly considers colour and luminosity dependence in the IA signal, will be needed in future. We also compare the various signal components at the best-fitting point in parameter space for each sample, and find that magnification and lensing contribute $\sim 2\!-\!18~{{\ \rm per\ cent}}$ of the total signal. As precision continues to improve, it will certainly be necessary to account for these effects in future direct IA measurements. Finally, we make equivalent measurements on a sample of emission-line galaxies from eBOSS at z ∼ 0.8. We constrain the non-linear alignment amplitude to be $A_1=0.07^{+0.32}_{-0.42}$ (|A1| < 0.78 at 95 per cent CL).

     
    more » « less
  9. Free, publicly-accessible full text available October 20, 2024
  10. ABSTRACT

    We present a method for mapping variations between probability distribution functions and apply this method within the context of measuring galaxy redshift distributions from imaging survey data. This method, which we name PITPZ for the probability integral transformations it relies on, uses a difference in curves between distribution functions in an ensemble as a transformation to apply to another distribution function, thus transferring the variation in the ensemble to the latter distribution function. This procedure is broadly applicable to the problem of uncertainty propagation. In the context of redshift distributions, for example, the uncertainty contribution due to certain effects can be studied effectively only in simulations, thus necessitating a transfer of variation measured in simulations to the redshift distributions measured from data. We illustrate the use of PITPZ by using the method to propagate photometric calibration uncertainty to redshift distributions of the Dark Energy Survey Year 3 weak lensing source galaxies. For this test case, we find that PITPZ yields a lensing amplitude uncertainty estimate due to photometric calibration error within 1 per cent of the truth, compared to as much as a 30 per cent underestimate when using traditional methods.

     
    more » « less