skip to main content


Search for: All records

Creators/Authors contains: "Lamberts, Astrid"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The current generation of galaxy simulations can resolve individual giant molecular clouds, the progenitors of dense star clusters. But the evolutionary fate of these young massive clusters, and whether they can become the old globular clusters (GCs) observed in many galaxies, is determined by a complex interplay of internal dynamical processes and external galactic effects. We present the first star-by-star N-body models of massive (N ∼ 105–107) star clusters formed in a FIRE-2 MHD simulation of a Milky Way-mass galaxy, with the relevant initial conditions and tidal forces extracted from the cosmological simulation. We select 895 (∼30 per cent) of the YMCs with >6 × 104 M⊙ from Grudić et al. 2022 and integrate them to z = 0 using the cluster Monte Carlo code, CMC. This procedure predicts a MW-like system with 148 GCs, predominantly formed during the early, bursty mode of star formation. Our GCs are younger, less massive, and more core-collapsed than clusters in the Milky Way or M31. This results from the assembly history and age-metallicity relationship of the host galaxy: Younger clusters are preferentially born in stronger tidal fields and initially retain fewer stellar-mass black holes, causing them to lose mass faster and reach core collapse sooner than older GCs. Our results suggest that the masses and core/half-light radii of GCs are shaped not only by internal dynamical processes, but also by the specific evolutionary history of their host galaxies. These results emphasize that N-body studies with realistic stellar physics are crucial to understanding the evolution and present-day properties of GC systems.

     
    more » « less
  2. ABSTRACT

    The properties of young star clusters formed within a galaxy are thought to vary in different interstellar medium conditions, but the details of this mapping from galactic to cluster scales are poorly understood due to the large dynamic range involved in galaxy and star cluster formation. We introduce a new method for modelling cluster formation in galaxy simulations: mapping giant molecular clouds (GMCs) formed self-consistently in a FIRE-2 magnetohydrodynamic galaxy simulation on to a cluster population according to a GMC-scale cluster formation model calibrated to higher resolution simulations, obtaining detailed properties of the galaxy’s star clusters in mass, metallicity, space, and time. We find $\sim 10{{\ \rm per\ cent}}$ of all stars formed in the galaxy originate in gravitationally bound clusters overall, and this fraction increases in regions with elevated Σgas and ΣSFR, because such regions host denser GMCs with higher star formation efficiency. These quantities vary systematically over the history of the galaxy, driving variations in cluster formation. The mass function of bound clusters varies – no single Schechter-like or power-law distribution applies at all times. In the most extreme episodes, clusters as massive as 7 × 106 M⊙ form in massive, dense clouds with high star formation efficiency. The initial mass–radius relation of young star clusters is consistent with an environmentally dependent 3D density that increases with Σgas and ΣSFR. The model does not reproduce the age and metallicity statistics of old ($\gt 11\rm Gyr$) globular clusters found in the Milky Way, possibly because it forms stars more slowly at z > 3.

     
    more » « less
  3. Abstract The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. ABSTRACT

    White dwarf binaries with orbital periods below 1 h will be the most numerous sources for the space-based gravitational wave detector Laser Interferometer Space Antenna (LISA). Based on thousands of individually resolved systems, we will be able to constrain binary evolution and provide a new map of the Milky Way and its close surroundings. In this paper we predict the main properties of populations of different types of detached white dwarf binaries detected by LISA over time. For the first time, we combine a high-resolution cosmological simulation of a Milky Way-mass galaxy (taken from the FIRE project) with a binary population synthesis model for low- and intermediate-mass stars. Our Galaxy model therefore provides a cosmologically realistic star formation and metallicity history for the Galaxy and naturally produces its different components such as the thin and thick disc, the bulge, the stellar halo, and satellite galaxies and streams. Thanks to the simulation, we show how different Galactic components contribute differently to the gravitational wave signal, mostly due to their typical age and distance distributions. We find that the dominant LISA sources will be He–He double white dwarfs (DWDs) and He–CO DWDs with important contributions from the thick disc and bulge. The resulting sky map of the sources is different from previous models, with important consequences for the searches for electromagnetic counterparts and data analysis. We also emphasize that much of the science-enabling information regarding white dwarf binaries, such as the chirp mass and the sky localization, becomes increasingly rich with long observations, including an extended mission up to 8 yr.

     
    more » « less