skip to main content


Search for: All records

Creators/Authors contains: "Larimore, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The increased push for access to computer science (CS) at the K-12 level has been argued as a way to broaden participation in computing. At the elementary level, computational thinking (CT) has been used as a framework for bringing CS ideas into the classroom and educating teachers about how they can integrate CT into their daily instruction. A number of these projects have made equity a central goal of their work by working in schools with diverse racial, linguistic, and economic diversity. However, we know little about whether and how teachers equitably engage students in CT during their classroom instruction– particularly during science and math lessons. In this paper, we present an approach to analyzing classroom instructional videos using the EQUIP tool (https://www.equip.ninja/). The purpose of this tool is to examine the quantity and quality of students’ contributions during CT-integrated math and science lessons and how it differs based on demographic markers. We highlight this approach using classroom video observation from four teachers and discuss future work in this area. 
    more » « less
  2. Incorporating computational thinking (CT) ideas into core subjects, such as mathematics and science, is one way of bringing early computer science (CS) education into elementary school. Minimal research has explored how teachers can translate their knowledge of CT into practice to create opportunities for their students to engage in CT during their math and science lessons. Such information can support the creation of quality professional development experiences for teachers. We analyzed how eight elementary teachers created opportunities for their students to engage in four CT practices (abstraction, decomposition, debugging, and patterns) during unplugged mathematics and science activities. We identified three strategies used by these teachers to create CT opportunities for their students: framing, prompting, and inviting reflection. Further, we grouped teachers into four profiles of implementation according to how they used these three strategies. We call the four profiles (1) presenting CT as general problem-solving strategies, (2) using CT to structure lessons, (3) highlighting CT through prompting, and (4) using CT to guide teacher planning. We discuss the implications of these results for professional development and student experiences. 
    more » « less
  3. Gresalfi, M. ; Horn, I. S. (Ed.)
    There is broad belief that preparing all students in preK-12 for a future in STEM involves integrating computing and computational thinking (CT) tools and practices. Through creating and examining rich “STEM+CT” learning environments that integrate STEM and CT, researchers are defining what CT means in STEM disciplinary settings. This interactive session brings together a diverse spectrum of leading STEM researchers to share how they operationalize CT, what integrated CT and STEM learning looks like in their curriculum, and how this learning is measured. It will serve as a rich opportunity for discussion to help advance the state of the field of STEM and CT integration. 
    more » « less
  4. Gresalfi, M. ; Horn, I. S. (Ed.)
    There is broad belief that preparing all students in preK-12 for a future in STEM involves integrating computing and computational thinking (CT) tools and practices. Through creating and examining rich “STEM+CT” learning environments that integrate STEM and CT, researchers are defining what CT means in STEM disciplinary settings. This interactive session brings together a diverse spectrum of leading STEM researchers to share how they operationalize CT, what integrated CT and STEM learning looks like in their curriculum, and how this learning is measured. It will serve as a rich opportunity for discussion to help advance the state of the field of STEM and CT integration. 
    more » « less