skip to main content


Search for: All records

Creators/Authors contains: "Lasher-Trapp, Sonia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Severe convective storms (SCS) and their associated hazards present significant societal risk. Understanding of how these hazards, such as hailfall, may change due to anthropogenic climate change is in its infancy. Previous methods used to investigate possible changes in SCS and their hail used climate model output and were limited by their coarse spatiotemporal resolution and less detailed representations of hail. This study instead uses an event-level pseudo–global warming (PGW) approach to simulate seven different hailstorms in their historical environments, and again in five different end-of-century PGW environments obtained from the worst-case scenario increases in CO2of five different CMIP5 members. Changes in large-scale environmental parameters were generally found to be consistent with prior studies, showing mostly increases in CAPE, CIN, and precipitable water, with minor changes in vertical wind shear. Nearly all simulated events had moderately stronger updrafts in the PGW environments. Only cold-season events showed an increase in hail sizes both within the storms and at the surface, whereas warm-season events exhibited a decrease in hail sizes at the surface and aloft. Changes in the event-total hailfall area at the ground also showed a seasonal trend, with increases in cold-season events and decreases in warm-season events. Melting depths increased for all PGW environments, and these increases likely contributed to greater rainfall area for warm-season events, where an increase in smaller hail aloft would be more prone to melting. The differences in PGW simulation hail sizes in cold-season and warm-season events found here are likely related to differences in microphysical processes and warrant future study.

    Significance Statement

    It is uncertain how severe thunderstorm hazards (such as hail, tornadoes, and damaging winds) may change due to human-induced climate change. Given the significant societal risk these hazards pose, this study seeks to better understand how hailstorms may change in the future. Simulated end-of-century storms in winter months showed larger hail sizes and a larger area of event-total hailfall than in the historical simulations, whereas simulated future storms in spring and summer months showed smaller hail sizes and a reduction in the area where hail fell. An analysis of traditional environmental and storm-scale properties did not reveal a clear distinction between cold-season and warm-season hailstorms, suggesting that changes in small-scale precipitation processes may be responsible.

     
    more » « less
  2. Abstract

    Supercell thunderstorms can produce heavy precipitation, and an improved understanding of entrainment may help to explain why. In Part I of this series, various mechanisms of entrainment were identified in the rotating stage of a single simulated supercell thunderstorm. The current study examines the strength and effectiveness of these mechanisms as a function of the environmental vertical wind shear in eight different supercell simulations. Entrainment is calculated directly as fluxes of air over the surface of the storm core; tracers are used to assess the resulting dilution of the moistest air ingested by the storm. Model microphysical rates are used to compare the impacts of entrainment on the efficiency of condensation/deposition of water vapor on hydrometeors within the core, and ultimately, upon precipitation production. Results show that the ascending “ribbons” of horizontal vorticity wrapping around the updraft contribute more to entrainment with increasing vertical wind shear, while turbulent eddies on the opposite side of the updraft contribute less. The storm-relative airstream introduces more low-level air into the storm core with increasing vertical wind shear. Thus, the total entrainment increases with increasing vertical wind shear, but the fractional entrainment decreases, yielding an increase in undiluted air within the storm core. As a result, the condensation efficiency within the storm core also increases with increasing vertical wind shear. Due to the increase in hydrometeors detrained aloft and the resulting enhanced evaporation as they fall, the precipitation efficiency evaluated using surface rainfall decreases with increasing vertical wind shear, as found in past studies.

     
    more » « less
  3. null (Ed.)
    Abstract The current study identifies and quantifies various mechanisms of entrainment, and their diluting effects, in the developing and mature stages of a simulated supercell thunderstorm. The two stages, differentiated by the lack or presence of a rotating updraft, are shown to entrain air by different, but related mechanisms that result from the strong vertical wind shear of the environment. The greatest entrainment rates in the developing stage result from the asymmetric overturning of large eddies near cloud top on the down-shear side. These rates are greater than those published in the literature for cumuli developing in environments lacking strong shear. Although the entrainment rate increases exponentially in time throughout the developing stage, successive cloud turrets help to replenish some of the lost buoyancy and condensate, allowing the nascent storm to develop further. During the mature stage, the greatest entrainment rates occur via “ribbons” of horizontal vorticity wrapping around the rotating updraft that ascend in time. The smaller width of the ribbons in comparison to the wider storm core limits their dilutive effects. Passive tracers placed in the low-level air ingested by the mature storm indicate that on average 20% of the core contains some undiluted air ingested from below the storm base, unaffected by any entrainment mechanism. 
    more » « less
  4. null (Ed.)
  5. Abstract

    The pseudo‐global‐warming (PGW) methodology provides an efficient means to investigate the response of a weather or climate event under an imposed climate change signal. In the traditional PGW implementation, this signal is represented through climate‐change “deltas” constructed using monthly averages of global climate model (GCM) output over decadal or longer periods during the past and future. The implications of alternative formulations of such deltas were explored herein. Diurnally varying (DV) deltas were compared to the time‐constant (TC) deltas used in the traditional PGW implementation; this was done to test the potential effect of future changes in the diurnal cycles of temperature, humidity, and winds. Deltas created using 10‐year averages were compared to those using 30‐year averages, to examine the effects of the time‐averaging period in the delta construction. Finally, the common practice of additionally averaging across multiple GCMs to form a composite delta was also considered. Using simulations of three different historical convective storm events, it was shown that each of these PGW delta formulations results in differences in simulation metrics such as total accumulated rainfall, and convective intensity, but major and/or unambiguous differences were not always found. It is recommended that users of the PGW approach carefully consider all implications of delta formulation on their particular problem.

     
    more » « less
  6. Abstract

    Recent studies have suggested a correct representation of cloud phase in the Southern Ocean region is important in climate models for an accurate representation of the energy balance. Satellite retrievals indicate many of the clouds are predominantly liquid, despite their low temperatures. However, clouds containing high numbers of ice crystals have sometimes been observed in this region and implicated the secondary ice production process called rime splintering. This study re‐examines rime splintering in Southern Ocean cumuli using both a new data set and high‐resolution numerical modeling. Measurements acquired during the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES) provide an evaluation of the amount of ice in shallow cumuli sampled over two days in this region. The measurements sometimes exhibit seven orders of magnitude or more ice particles compared to amounts expected from measurements of ice‐nucleating particles (INP) on the same days. Cumuli containing multiple updrafts had the greatest tendency to contain high ice concentrations and meet the expected conditions for rime splintering. Idealized numerical modeling, constrained by the observations, suggests that the multiple updrafts produce more frozen raindrops/graupel, and allow them to travel through the rime‐splintering zone over an extended period of time, increasing the number of ice particles by many orders of magnitude. The extremely low number of INP in the Southern Ocean thus appears to require special conditions like multiple updrafts to help glaciate the cumuli in this region, potentially explaining the predominance of supercooled cumuli observed there.

     
    more » « less
  7. null (Ed.)
    Abstract Weather and climate models are challenged by uncertainties and biases in simulating Southern Ocean (SO) radiative fluxes that trace to a poor understanding of cloud, aerosol, precipitation and radiative processes, and their interactions. Projects between 2016 and 2018 used in-situ probes, radar, lidar and other instruments to make comprehensive measurements of thermodynamics, surface radiation, cloud, precipitation, aerosol, cloud condensation nuclei (CCN) and ice nucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase cloudsnucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase clouds common to this pristine environment. Data including soundings were collected from the NSF/NCAR G-V aircraft flying north-south gradients south of Tasmania, at Macquarie Island, and on the RV Investigator and RSV Aurora Australis. Synergistically these data characterize boundary layer and free troposphere environmental properties, and represent the most comprehensive data of this type available south of the oceanic polar front, in the cold sector of SO cyclones, and across seasons. Results show a largely pristine environments with numerous small and few large aerosols above cloud, suggesting new particle formation and limited long-range transport from continents, high variability in CCN and cloud droplet concentrations, and ubiquitous supercooled water in thin, multi-layered clouds, often with small-scale generating cells near cloud top. These observations demonstrate how cloud properties depend on aerosols while highlighting the importance of confirmed low clouds were responsible for radiation biases. The combination of models and observations is examining how aerosols and meteorology couple to control SO water and energy budgets. 
    more » « less