skip to main content


Search for: All records

Creators/Authors contains: "Latychev, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY

    Earth structure beneath the Antarctic exerts an important control on the evolution of the ice sheet. A range of geological and geophysical data sets indicate that this structure is complex, with the western sector characterized by a lithosphere of thickness ∼50–100 km and viscosities within the upper mantle that vary by 2–3 orders of magnitude. Recent analyses of uplift rates estimated using Global Navigation Satellite System (GNSS) observations have inferred 1-D viscosity profiles below West Antarctica discretized into a small set of layers within the upper mantle using forward modelling of glacial isostatic adjustment (GIA). It remains unclear, however, what these 1-D viscosity models represent in an area with complex 3-D mantle structure, and over what geographic length-scale they are applicable. Here, we explore this issue by repeating the same modelling procedure but applied to synthetic uplift rates computed using a realistic model of 3-D viscoelastic Earth structure inferred from seismic tomographic imaging of the region, a finite volume treatment of GIA that captures this complexity, and a loading history of Antarctic ice mass changes inferred over the period 1992–2017. We find differences of up to an order of magnitude between the best-fitting 1-D inferences and regionally averaged depth profiles through the 3-D viscosity field used to generate the synthetics. Additional calculations suggest that this level of disagreement is not systematically improved if one increases the number of observation sites adopted in the analysis. Moreover, the 1-D models inferred from such a procedure are non-unique, that is a broad range of viscosity profiles fit the synthetic uplift rates equally well as a consequence, in part, of correlations between the viscosity values within each layer. While the uplift rate at each GNSS site is sensitive to a unique subspace of the complex, 3-D viscosity field, additional analyses based on rates from subsets of proximal sites showed no consistent improvement in the level of bias in the 1-D inference. We also conclude that the broad, regional-scale uplift field generated with the 3-D model is poorly represented by a prediction based on the best-fitting 1-D Earth model. Future work analysing GNSS data should be extended to include horizontal rates and move towards inversions for 3-D structure that reflect the intrinsic 3-D resolving power of the data.

     
    more » « less
  2. Abstract The West Antarctic Ice Sheet (WAIS) overlies a thin, variable-thickness lithosphere and a shallow upper-mantle region of laterally varying and, in some regions, very low (~1018 Pa s) viscosity. We explore the extent to which viscous effects may affect predictions of present-day geoid and crustal deformation rates resulting from Antarctic ice mass flux over the last quarter century and project these calculations into the next half century, using viscoelastic Earth models of varying complexity. Peak deformation rates at the end of a 25-yr simulation predicted with an elastic model underestimate analogous predictions that are based on a 3D viscoelastic Earth model (with minimum viscosity below West Antarctica of 1018 Pa s) by ~15 and ~3 mm yr−1 in the vertical and horizontal directions, respectively, at sites overlying low-viscosity mantle and close to high rates of ice mass flux. The discrepancy in uplift rate can be reduced by adopting 1D Earth models tuned to the regional average viscosity profile beneath West Antarctica. In the case of horizontal crustal rates, adopting 1D regional viscosity models is no more accurate in recovering predictions that are based on 3D viscosity models than calculations that assume a purely elastic Earth. The magnitude and relative contribution of viscous relaxation to crustal deformation rates will likely increase significantly in the next several decades, and the adoption of 3D viscoelastic Earth models in analyses of geodetic datasets [e.g., Global Navigation Satellite System (GNSS); Gravity Recovery and Climate Experiment (GRACE)] will be required to accurately estimate the magnitude of Antarctic modern ice mass flux in the progressively warming world. 
    more » « less
  3. Abstract

    Seismic tomography models indicate highly variable Earth structure beneath Antarctica with anomalously low shallow mantle viscosities below West Antarctica. An improved projection of the contribution of the Antarctic Ice Sheet to sea‐level change requires consideration of this complexity to precisely account for water expelled into the ocean from uplifting marine sectors. Here we build a high‐resolution 3‐D viscoelastic structure model based on recent inferences of seismic velocity heterogeneity below the continent. The model serves as input to a global‐scale sea‐level model that we use to investigate the influence of solid Earth deformation in Antarctica on future global mean sea‐level (GMSL) rise. Our calculations are based on a suite of ice mass projections generated with a range of climate forcings and suggest that water expulsion from the rebounding marine basins contributes 4%–16% and 7%–14% to the projected GMSL change at 2100 and 2500, respectively.

     
    more » « less