skip to main content


Search for: All records

Creators/Authors contains: "Le Goues, Claire"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. The Linux Kernel is a world-class operating system controlling most of our computing infrastructure: mobile devices, Internet routers and services, and most of the supercomputers. Linux is also an example of low-level software with no comprehensive regression test suite (for good reasons). The kernel’s tremendous societal importance imposes strict stability and correctness requirements. These properties make Linux a challenging and relevant target for static automated program repair (APR).

    Over the past decade, a significant progress has been made in dynamic APR. However, dynamic APR techniques do not translate naturally to systems without tests. We present a static APR technique addressing sequentiallocking API misusebugs in the Linux Kernel. We attack the key challenge of static APR, namely, the lack of detailed program specification, by combining static analysis with machine learning to complement the information presented by the static analyzer. In experiments on historical real-world bugs in the kernel, we were able to automatically re-produce or propose equivalent patches in 85% of the human-made patches, and automatically rank them among the top three candidates for 64% of the cases and among the top five for 74%.

     
    more » « less
    Free, publicly-accessible full text available July 31, 2024
  3. Variable names are critical for conveying intended program behavior. Machine learning-based program analysis methods use variable name representations for a wide range of tasks, such as suggesting new variable names and bug detection. Ideally, such methods could capture semantic relationships between names beyond syntactic similarity, e.g., the fact that the names average and mean are similar. Unfortunately, previous work has found that even the best of previous representation approaches primarily capture "relatedness" (whether two variables are linked at all), rather than "similarity" (whether they actually have the same meaning). We propose VarCLR, a new approach for learning semantic representations of variable names that effectively captures variable similarity in this stricter sense. We observe that this problem is an excellent fit for contrastive learning, which aims to minimize the distance between explicitly similar inputs, while maximizing the distance between dissimilar inputs. This requires labeled training data, and thus we construct a novel, weakly-supervised variable renaming dataset mined from GitHub edits. We show that VarCLR enables the effective application of sophisticated, general-purpose language models like BERT, to variable name representation and thus also to related downstream tasks like variable name similarity search or spelling correction. VarCLR produces models that significantly outperform the state-of-the-art on IdBench, an existing benchmark that explicitly captures variable similarity (as distinct from relatedness). Finally, we contribute a release of all data, code, and pre-trained models, aiming to provide a drop-in replacement for variable representations used in either existing or future program analyses that rely on variable names. 
    more » « less
  4. Large language models have shown a propensity for generating correct, multi-line programs from natural language prompts. Given past findings highlighting that bugs and patches can be distinguished by predictability according to simple language models, it is natural to ask if modern, large neural options lend themselves especially well to program repair without any calibration. We study this in the context of one-line bugs, providing a series of models of varying scales (from 160M to 12B parameters) with the context preceding a buggy line in 72 Java and Python programs and analyze the rank at which the correct patch (and original buggy line) is generated, if at all. Our results highlight a noticeable correlation of model size with test-passing accuracy and patch ranking quality, as well as several other findings related to the differences between the two languages and the propensity for especially the largest models to generate candidate patches that closely resemble (if not exactly match), the original developer patch. 
    more » « less
  5. A common tool used by security professionals for reverse engineering binaries found in the wild is the decompiler. A decompiler attempts to reverse compilation, transforming a binary to a higher-level language such as C. High-level languages ease reasoning about programs by providing useful abstractions such as loops, typed variables, and comments, but these abstractions are lost during compilation. Decompilers are able to deterministically reconstruct structural properties of code, but comments, variable names, and custom variable types are technically impossible to recover. In this paper we present DIRTY (DecompIled variable ReTYper), a novel technique for improving the quality of decompiler output that automatically generates meaningful variable names and types. DIRTY is built on a Transformer based neural network model and is trained on code automatically scraped from repositories on GitHub. DIRTY uses this model to postprocesses decompiled files, recommending variable types and names given their context. Empirical evaluation on a novel dataset of C code mined from GitHub shows that DIRTY outperforms prior work approaches by a sizable margin, recovering the original names written by developers 66.4% of the time and the original types 75.8% of the time. 
    more » « less