skip to main content


Search for: All records

Creators/Authors contains: "Lebedev, S. V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report on the results of a simulation-based study of colliding magnetized plasma flows. Our set-up mimics pulsed power laboratory astrophysical experiments but, with an appropriate frame change, is relevant to astrophysical jets with internal velocity variations. We track the evolution of the interaction region where the two flows collide. Cooling via radiative losses is included in the calculation. We systematically vary plasma beta (βm) in the flows, the strength of the cooling (Λ0), and the exponent (α) of temperature dependence of the cooling function. We find that for strong magnetic fields a counter-propagating jet called a ‘spine’ is driven by pressure from shocked toroidal fields. The spines eventually become unstable and break apart. We demonstrate how formation and evolution of the spines depend on initial flow parameters and provide a simple analytical model that captures the basic features of the flow.

     
    more » « less
  2. We present a technique to measure the time-resolved velocity and ion sound speed in magnetized, supersonic high-energy-density plasmas. We place an inductive (“b-dot”) probe in a supersonic pulsed-power-driven plasma flow and measure the magnetic field advected by the plasma. As the magnetic Reynolds number is large ( R M > 10), the plasma flow advects a magnetic field proportional to the current at the load. This enables us to estimate the flow velocity as a function of time from the delay between the current at the load and the signal at the probe. The supersonic flow also generates a hydrodynamic bow shock around the probe, the structure of which depends on the upstream sonic Mach number. By imaging the shock around the probe with a Mach–Zehnder interferometer, we determine the upstream Mach number from the shock Mach angle, which we then use to determine the ion sound speed from the known upstream velocity. We use the sound speed to infer the value of [Formula: see text], where [Formula: see text] is the average ionization and T e is the electron temperature. We use this diagnostic to measure the time-resolved velocity and sound speed of a supersonic ( M S ∼ 8), super-Alfvénic ( M A ∼ 2) aluminum plasma generated during the ablation stage of an exploding wire array on the Magpie generator (1.4 MA, 250 ns). The velocity and [Formula: see text] measurements agree well with the optical Thompson scattering measurements reported in the literature and with 3D resistive magnetohydrodynamic simulations in GORGON. 
    more » « less
  3. Supersonic interacting flows occurring in phenomena, such as protostellar jets, give rise to strong shocks and have been demonstrated in several laboratory experiments. To study such colliding flows, we use the AstroBEAR AMR code to conduct hydrodynamic simulations in three dimensions. We introduce variations in the flow parameters of density, velocity, and cross-sectional radius of the colliding flows in order to study the propagation and conical shape of the bow shock formed by collisions between two, not necessarily symmetric, hypersonic flows. We find that the motion of the interaction region is driven by imbalances in ram pressure between the two flows, while the conical structure of the bow shock is a result of shocked lateral outflows being deflected from the horizontal when the flows are of differing cross sections.

     
    more » « less
  4. ABSTRACT Collisional self-interactions occurring in protostellar jets give rise to strong shocks, the structure of which can be affected by radiative cooling within the flow. To study such colliding flows, we use the AstroBEAR AMR code to conduct hydrodynamic simulations in both one and three dimensions with a power-law cooling function. The characteristic length and time-scales for cooling are temperature dependent and thus may vary as shocked gas cools. When the cooling length decreases sufficiently and rapidly, the system becomes unstable to the radiative shock instability, which produces oscillations in the position of the shock front; these oscillations can be seen in both the one- and three-dimensional cases. Our simulations show no evidence of the density clumping characteristic of a thermal instability, even when the cooling function meets the expected criteria. In the three-dimensional case, the nonlinear thin shell instability (NTSI) is found to dominate when the cooling length is sufficiently small. When the flows are subjected to the radiative shock instability, oscillations in the size of the cooling region allow NTSI to occur at larger cooling lengths, though larger cooling lengths delay the onset of NTSI by increasing the oscillation period. 
    more » « less