skip to main content


Search for: All records

Creators/Authors contains: "Lee, Cheng-Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate electronic structure and dopability of an ultrawide bandgap (UWBG) AlScO3 perovskite, a known high-pressure and long-lived metastable oxide. From first-principles electronic structure calculations, HSE06(+G0W0), we find this material to exhibit an indirect bandgap of around 8.0 eV. Defect calculations point to cation and oxygen vacancies as the dominant intrinsic point defects limiting extrinsic doping. While acceptor behaving Al and Sc vacancies prevent n-type doping, oxygen vacancies permit the Fermi energy to reach ∼0.3 eV above the valence band maximum, rendering AlScO3 p-type dopable. Furthermore, we find that both Mg and Zn could serve as extrinsic p-type dopants. Specifically, Mg is predicted to have achievable net acceptor concentrations of ∼1017 cm−3 with ionization energy of bound small hole polarons of ∼0.49 eV and free ones below 0.1 eV. These values place AlScO3 among the UWBG oxides with lowest bound small hole polaron ionization energies, which, as we find, is likely due to large ionic dielectric constant that correlates well with low hole polaron ionization energies across various UWBG oxides.

     
    more » « less
  2. A computational approach has become an indispensable tool in materials science research and related industry. At the University of Illinois, Urbana-Champaign, our team at the Department of Materials Science and Engineering (MSE), as part of a Strategic Instructional Initiatives Program (SIIP), has integrated computation into multiple MSE undergraduate courses over the last years. This has established a stable environment for computational education in MSE undergraduate courses through the duration of the program. To date, all MSE students are expected to have multiple experiences of solving practical problems using computational modules before graduation. In addition, computer-based techniques have been integrated into course instruction through iClicker, lecture recording, and online homework and testing. In this paper, we seek to identify the impact of these changes beyond courses participating in the original SIIP project. We continue to keep track of students' perception of the computational curriculum within participating courses. Furthermore, we investigate the influence of the computational exposure on students' perspective in research and during job search. Finally, we collect and analyze feedback from department faculty regarding their experience with teaching techniques involving computation. 
    more » « less