skip to main content


Search for: All records

Creators/Authors contains: "Lee, Daeyeon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 28, 2025
  2. Free, publicly-accessible full text available August 30, 2024
  3. Free, publicly-accessible full text available October 18, 2024
  4. Porous materials possess numerous useful functions because of their high surface area and ability to modulate the transport of heat, mass, fluids, and electromagnetic waves. Unlike highly ordered structures, disordered porous structures offer the advantages of ease of fabrication and high fault tolerance. Bicontinuous interfacially jammed emulsion gels (bijels) are kinetically trapped disordered biphasic materials that can be converted to porous materials with tunable features. Current methods of bijel fabrication result in domains that are micrometers or larger, and non-uniform in size, limiting their surface area, mechanical strength, and interaction with electromagnetic waves. In this work, scalable synthesis of bijels with uniform and sub-micrometer domains is achieved via a two-step solvent removal process. The resulting bijels are characterized quantitatively to verify the uniformity and sub-micrometer scale of the domains. Moreover, these bijels have structures that resemble the microstructure of the scale of the white beetle Cyphochilus. We find that such bijel films with relatively small thicknesses (<150 μm) exhibit strong solar reflectance as well as high brightness and whiteness in the visible range. Considering their scalability in manufacturing, we believe that VIPS-STRIPS bijels have great potential in large-scale applications including passive cooling, solar cells, and light emitting diodes (LEDs). 
    more » « less
  5. The effect of nanoscale defects on nanoparticle dynamics in defective tetra-poly(ethylene glycol) (tetra-PEG) hydrogels is investigated using single particle tracking. In a swollen nearly homogeneous hydrogel, PEG-functionalized quantum dot (QD) probes with a similar hydrodynamic diameter ( d h = 15.1 nm) to the mesh size (〈 ξ s 〉 = 16.3 nm), are primarily immobile. As defects are introduced to the network by reaction-tuning, both the percentage of mobile QDs and the size of displacements increase as the number and size of the defects increase with hydrolysis time, although a large portion of the QDs remain immobile. To probe the effect of nanoparticle size on dynamics in defective networks, the transport of d h = 47.1 nm fluorescent polystyrene (PS) and d h = 9.6 nm PEG-functionalized QDs is investigated. The PS nanoparticles are immobile in all hydrogels, even in highly defective networks with an open structure. Conversely, the smaller QDs are more sensitive to perturbations in the network structure with an increased percentage of mobile particles and larger diffusion coefficients compared to the larger QDs and PS nanoparticles. The differences in nanoparticle mobility as a function of size suggests that particles of different sizes probe different length scales of the defects, indicating that metrics such as the confinement ratio alone cannot predict bulk dynamics in these systems. This study provides insight into designing hydrogels with controlled transport properties, with particular importance for degradable hydrogels for drug delivery applications. 
    more » « less