skip to main content


Search for: All records

Creators/Authors contains: "Lee, Jacqueline"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Parks, Samantha T. (Ed.)
    ABSTRACT The article documents faculty experiences with the shift online due to the pandemic and provides recommendations to science, technology, engineering, and mathematics (STEM) instructors. Over 100 faculty members were surveyed on these topics and contrasted with previously reported student experiences. The online shift changed how faculty administered exams, ran courses, and acted to ensure academic integrity. For example, when exams went online, 73% of faculty reported spending more time preventing cheating. Concerning academic integrity and stress, faculty and students agreed with the exception of a few notable disconnects. Students reported greater workloads in online classes, while faculty maintained that the shift online did not change student workloads. Students perceived more online cheating than faculty. Overall, there seems to be a significant disconnect regarding faculty not realizing how much their actions may encourage or discourage cheating. Few faculty (<15%) indicated that being a tough grader or having test times too short is a motivating factor, but over 55% of students reported that these motivate students to cheat. Conversely, over 60% of students reported respect for their professors discourages them from cheating, while only 37% of faculty indicated the same. Over 70% of faculty and students indicated that fear of getting caught is a deterrent to cheating. Recommendations to reconnect include (i) faculty should use the finding that the number one deterrent of cheating is fear of getting caught; and (ii) faculty should maintain students’ respect by being clear or overestimating workload requirements, carefully adjusting time for online exams, and setting clear expectations with uncomplicated exam questions consistent with the material taught. 
    more » « less
  2. ABSTRACT The article documents students’ experiences with the shift online at the onset of the COVID-19 pandemic and provides informed recommendations to STEM instructors regarding academic integrity and student stress. Over 500 students were surveyed on these topics, including an open-ended question. Students experienced more stress and perceived a greater workload in online courses and therefore preferred in-person courses overall. Personal awareness of cheating during online exams is positively correlated with the proportion of cheating a student perceives. Fear of getting caught is the best cheating deterrent while getting a better grade makes cheating most enticing. Randomization of questions and answer choices is perceived as a highly effective tool to reduce cheating and is reported as the least stress-inducing method. Inability to backtrack and time limits cause students the most stress. Students report that multiple choice questions are the least effective question type to discourage cheating and oral exam questions cause the most stress. Use of camera and lockdown browser or being video- and audio- recorded caused the majority of student stress. Yet, nearly 60% agree that the combination of camera and lockdown browser is an effective deterrent. Recommendations: (i) Be transparent regarding academic dishonesty detection methods and penalties. (ii) Use online invigilating tools. (iii) Synchronize exams and (iv) randomize exam questions. (v) Allow backtracking. (vi) Avoid converting in-person exams to online exams; instead, explore new ways of designing exams for the online environment. 
    more » « less
  3. null (Ed.)
    Abstract Background Transforming the culture of STEM higher education to be more inclusive and help more students reach STEM careers is challenging. Herein, we describe a new model for STEM higher education transformation, the Sustainable, Transformative Engagement across a Multi-Institution/Multidisciplinary STEM, (STEM) 2 , “STEM-squared”, Network. The Network embraces a pathways model, as opposed to a pipeline model, to STEM career entry. It is founded upon three strong theoretical frameworks: Communities of Transformation, systems design for organizational change, and emergent outcomes for the diffusion of innovations in STEM education. Currently composed of five institutions—three private 4-year universities and two public community colleges—the Network capitalizes on the close geographic proximity and shared student demographics to effect change across the classroom, disciplinary, institutional, and inter-institutional levels. Results The (STEM) 2 Network has increased the extent to which participants feel empowered to be change agents for STEM higher education reform and has increased collaboration across disciplines and institutions. Participants were motivated to join the Network to improve STEM education, to improve the transfer student experience, to collaborate with colleagues across disciplines and institutions, and because they respected the leadership team. Participants continue to engage in the Network because of the collaborations created, opportunities for professional growth, opportunities to improve STEM education, and a sense that the Network is functioning as intended. Conclusion The goal to increase the number and diversity of people entering STEM careers is predicated on transforming the STEM higher education system to embrace a pathways model to a STEM career. The (STEM) 2 Network is achieving this by empowering faculty to transform the system from the inside. While the systemic transformation of STEM higher education is challenging, the (STEM) 2 Network directly addresses those challenges by bridging disciplinary and institutional silos and leveraging the reward structure of the current system to support faculty as they work to transform this very system. 
    more » « less
  4. null (Ed.)
    ABSTRACT The global COVID-19 pandemic left universities with few options but to turn to remote learning. With much effort, STEM courses made this change in modality; however, many laboratory skills, such as measurement and handling equipment, are more difficult to teach in an online learning environment. A cohort of instructors who are part of the NSF RCN-UBE funded Sustainable, Transformative Engagement across a Multi-Institution/Multidisciplinary STEM (STEM 2 ) Network (a working group of faculty from two community colleges and three 4-year universities) analyzed introductory biology and chemistry courses to identify essential laboratory skills that students will need in advanced courses. Seven essential laboratory proficiencies were derived from reviewing disciplinary guiding documents such as AAAS’s Vision and Change in Undergraduate Biology Education, the American Society for Microbiology’s Recommended Curriculum Guidelines for Undergraduate Microbiology Education , and the American Chemical Society’s Guidelines for Chemistry : data analysis, scientific writing, proper handling and disposal of laboratory materials, discipline-specific techniques, measurement, lab safety and personal protective equipment, and interpersonal and collaborative skills. Our analysis has determined that some of these skills are difficult to develop in a remote online setting but could be recovered with appropriate interventions. Skill recovery procedures suggested are a skills “boot camp,” department and college coordinated club events, and a triage course. The authors recommend that one of these three recovery mechanisms be offered to bridge this skill gap and better prepare STEM students for upper-level science courses and the real world. 
    more » « less