skip to main content


Search for: All records

Creators/Authors contains: "Lee, Jumin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract Moraxella catarrhalis (M. catarrhalis) is a pathogenic gram-negative bacterium that causes otitis media and sinusitis in children. Three major serotypes A, B and C are identified to account for approximately 95% of the clinical isolates. Understanding the conformational properties of different serotypes of M. catarrhalis provides insights into antigenic determinants. In this work, all-atom molecular dynamics simulations were conducted for M. catarrhalis lipooligosaccharide (LOS) bilayer systems and oligosaccharides (OS) in water solution to investigate the conformational similarities and differences of three serotypes. For up to 10 neutral monosaccharides in the core part, the conformational ensembles described by the pair-wise root mean square deviation distributions are similar among the three serotypes of either the LOS or OS. At the central β-($1\to4$)-linkage, anti-$\psi$ conformation in conjunction with the gauche-gauche (g−) conformation of the central trisubstituted glucosyl residue is observed as the dominant conformation to sustain the structural characteristics of M. catarrhalis three types, which is further supported by calculated transglycosidic ${}^3{J}_{C,H}\Big({\psi}_H\Big)$ of serotype A in comparison to experimental data. Interestingly, the conformational variability of three serotypes is more restricted for the OS in water solution than that in the LOS bilayer systems. The LOS–LOS interactions in the bilayer systems are responsible for the increased conformational diversity despite of tight packing. Solvent-accessible surface area analysis suggests that a trisaccharide attached to the β-($1\to 6$)-linked sugar in all three serotypes of LOS could be the common epitope and have the possibility to interact with antibodies. 
    more » « less