skip to main content


Search for: All records

Creators/Authors contains: "Lee, Seokhyeong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2025
  2. Abstract

    Phonons traveling in solid-state devices are emerging as a universal excitation for coupling different physical systems. Phonons at microwave frequencies have a similar wavelength to optical photons in solids, enabling optomechanical microwave-optical transduction of classical and quantum signals. It becomes conceivable to build optomechanical integrated circuits (OMIC) that guide both photons and phonons and interconnect photonic and phononic devices. Here, we demonstrate an OMIC including an optomechanical ring resonator (OMR), where  co-resonant infrared photons and GHz phonons induce significantly enhanced interconversion. The platform is hybrid, using wide bandgap semiconductor gallium phosphide (GaP) for waveguiding and piezoelectric zinc oxide (ZnO) for phonon generation. The OMR features photonic and phononic quality factors of >1 × 105and 3.2 × 103, respectively. The optomechanical interconversion between photonic modes achieved an internal conversion efficiency$${\eta }_{i}=(2.1\pm 0.1)\%$$ηi=(2.1±0.1)%and a total device efficiency$${\eta }_{{tot}}=0.57{\times 10}^{-6}$$ηtot=0.57×106at a low acoustic pump power of 1.6 mW. The efficient conversion in OMICs enables microwave-optical transduction for quantum information and microwave photonics applications.

     
    more » « less
  3. Abstract

    Image sensors with internal computing capability enable in-sensor computing that can significantly reduce the communication latency and power consumption for machine vision in distributed systems and robotics. Two-dimensional semiconductors have many advantages in realizing such intelligent vision sensors because of their tunable electrical and optical properties and amenability for heterogeneous integration. Here, we report a multifunctional infrared image sensor based on an array of black phosphorous programmable phototransistors (bP-PPT). By controlling the stored charges in the gate dielectric layers electrically and optically, the bP-PPT’s electrical conductance and photoresponsivity can be locally or remotely programmed with 5-bit precision to implement an in-sensor convolutional neural network (CNN). The sensor array can receive optical images transmitted over a broad spectral range in the infrared and perform inference computation to process and recognize the images with 92% accuracy. The demonstrated bP image sensor array can be scaled up to build a more complex vision-sensory neural network, which will find many promising applications for distributed and remote multispectral sensing.

     
    more » « less
  4. Abstract

    Excitons are elementary optical excitation in semiconductors. The ability to manipulate and transport these quasiparticles would enable excitonic circuits and devices for quantum photonic technologies. Recently, interlayer excitons in 2D semiconductors have emerged as a promising candidate for engineering excitonic devices due to their long lifetime, large exciton binding energy, and gate tunability. However, the charge-neutral nature of the excitons leads to weak response to the in-plane electric field and thus inhibits transport beyond the diffusion length. Here, we demonstrate the directional transport of interlayer excitons in bilayer WSe2driven by the propagating potential traps induced by surface acoustic waves (SAW). We show that at 100 K, the SAW-driven excitonic transport is activated above a threshold acoustic power and reaches 20 μm, a distance at least ten times longer than the diffusion length and only limited by the device size. Temperature-dependent measurement reveals the transition from the diffusion-limited regime at low temperature to the acoustic field-driven regime at elevated temperature. Our work shows that acoustic waves are an effective, contact-free means to control exciton dynamics and transport, promising for realizing 2D materials-based excitonic devices such as exciton transistors, switches, and transducers up to room temperature.

     
    more » « less
  5. null (Ed.)
  6. Abstract

    Herein we introduce a facile, solution‐phase protocol to modify the Lewis basic surface of few‐layer black phosphorus (bP) and demonstrate its effectiveness at providing ambient stability and tuning of electronic properties. Commercially available group 13 Lewis acids that range in electrophilicity, steric bulk, and Pearson hard/soft‐ness are evaluated. The nature of the interaction between the Lewis acids and thebP lattice is investigated using a range of microscopic (optical, atomic force, scanning electron) and spectroscopic (energy dispersive, X‐ray photoelectron) methods. Al and Ga halides are most effective at preventing ambient degradation ofbP (>84 h for AlBr3), and the resulting field‐effect transistors show excellentIVcharacteristics, photocurrent, and current stability, and are significantly p‐doped. This protocol, chemically matched tobP and compatible with device fabrication, opens a path for deterministic and persistent tuning of the electronic properties inbP.

     
    more » « less
  7. Abstract

    Herein we introduce a facile, solution‐phase protocol to modify the Lewis basic surface of few‐layer black phosphorus (bP) and demonstrate its effectiveness at providing ambient stability and tuning of electronic properties. Commercially available group 13 Lewis acids that range in electrophilicity, steric bulk, and Pearson hard/soft‐ness are evaluated. The nature of the interaction between the Lewis acids and thebP lattice is investigated using a range of microscopic (optical, atomic force, scanning electron) and spectroscopic (energy dispersive, X‐ray photoelectron) methods. Al and Ga halides are most effective at preventing ambient degradation ofbP (>84 h for AlBr3), and the resulting field‐effect transistors show excellentIVcharacteristics, photocurrent, and current stability, and are significantly p‐doped. This protocol, chemically matched tobP and compatible with device fabrication, opens a path for deterministic and persistent tuning of the electronic properties inbP.

     
    more » « less