skip to main content


Search for: All records

Creators/Authors contains: "Lei, Hechang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Moiré magnetism featured by stacking engineered atomic registry and lattice interactions has recently emerged as an appealing quantum state of matter at the forefront of condensed matter physics research. Nanoscale imaging of moiré magnets is highly desirable and serves as a prerequisite to investigate a broad range of intriguing physics underlying the interplay between topology, electronic correlations, and unconventional nanomagnetism. Here we report spin defect-based wide-field imaging of magnetic domains and spin fluctuations in twisted double trilayer (tDT) chromium triiodide CrI3. We explicitly show that intrinsic moiré domains of opposite magnetizations appear over arrays of moiré supercells in low-twist-angle tDT CrI3. In contrast, spin fluctuations measured in tDT CrI3manifest little spatial variations on the same mesoscopic length scale due to the dominant driving force of intralayer exchange interaction. Our results enrich the current understanding of exotic magnetic phases sustained by moiré magnetism and highlight the opportunities provided by quantum spin sensors in probing microscopic spin related phenomena on two-dimensional flatland.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Kagome lattices host flat bands due to their frustrated lattice geometry, which leads to destructive quantum interference of electron wave functions. Here, we report imaging of the kagome flat band localization in real-space using scanning tunneling microscopy. We identify both the Fe3Sn kagome lattice layer and the Sn2honeycomb layer with atomic resolution in kagome antiferromagnet FeSn. On the Fe3Sn lattice, at the flat band energy determined by the angle resolved photoemission spectroscopy, tunneling spectroscopy detects an unusual state localized uniquely at the Fe kagome lattice network. We further show that the vectorial in-plane magnetic field manipulates the spatial anisotropy of the localization state within each kagome unit cell. Our results are consistent with the real-space flat band localization in the magnetic kagome lattice. We further discuss the magnetic tuning of flat band localization under the spin–orbit coupled magnetic kagome lattice model.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract The kagome metals of the family A V 3 Sb 5 , featuring a unique structural motif, harbor an array of intriguing phenomena such as chiral charge order and superconductivity. CsV 3 Sb 5 is of particular interest because it displays a double superconducting dome in the region of the temperature-pressure phase diagram where charge order is still present. However, the microscopic origin of such an unusual behavior remains an unsolved issue. Here, to address it, we combine high-pressure, low-temperature muon spin relaxation/rotation with first-principles calculations. We observe a pressure-induced threefold enhancement of the superfluid density, which also displays a double-peak feature, similar to the superconducting critical temperature. This leads to three distinct regions in the phase diagram, each of which features distinct slopes of the linear relation between superfluid density and the critical temperature. These results are attributed to a possible evolution of the charge order pattern from the superimposed tri-hexagonal Star-of-David phase at low pressures (within the first dome) to the staggered tri-hexagonal phase at intermediate pressures (between the first and second domes). Our findings suggest a change in the nature of the charge-ordered state across the phase diagram of CsV 3 Sb 5 , with varying degrees of competition with superconductivity. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    We used a combination of polarized Raman spectroscopy experiment and model magnetism–phonon coupling calculations to study the rich magneto-Raman effect in the two-dimensional (2D) magnet CrI 3 . We reveal a layered-magnetism–assisted phonon scattering mechanism below the magnetic onset temperature, whose Raman excitation breaks time-reversal symmetry, has an antisymmetric Raman tensor, and follows the magnetic phase transitions across critical magnetic fields, on top of the presence of the conventional phonon scattering with symmetric Raman tensors in N -layer CrI 3 . We resolve in data and by calculations that the first-order A g phonon of the monolayer splits into an N -fold multiplet in N -layer CrI 3 due to the interlayer coupling ( N ≥ 2 ) and that the phonons within the multiplet show distinct magnetic field dependence because of their different layered-magnetism–phonon coupling. We further find that such a layered-magnetism–phonon coupled Raman scattering mechanism extends beyond first-order to higher-order multiphonon scattering processes. Our results on the magneto-Raman effect of the first-order phonons in the multiplet and the higher-order multiphonons in N -layer CrI 3 demonstrate the rich and strong behavior of emergent magneto-optical effects in 2D magnets and underline the unique opportunities of spin–phonon physics in van der Waals layered magnets. 
    more » « less