skip to main content


Search for: All records

Creators/Authors contains: "Lendinez, Sergi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Magnons, the quantum-mechanical fundamental excitations of magnetic solids, are bosons whose number does not need to be conserved in scattering processes. Microwave-induced parametric magnon processes, often called Suhl instabilities, have been believed to occur in magnetic thin films only, where quasi-continuous magnon bands exist. Here, we reveal the existence of such nonlinear magnon-magnon scattering processes and their coherence in ensembles of magnetic nanostructures known as artificial spin ice. We find that these systems exhibit effective scattering processes akin to those observed in continuous magnetic thin films. We utilize a combined microwave and microfocused Brillouin light scattering measurement approach to investigate the evolution of their modes. Scattering events occur between resonance frequencies that are determined by each nanomagnet’s mode volume and profile. Comparison with numerical simulations reveals that frequency doubling is enabled by exciting a subset of nanomagnets that, in turn, act as nanosized antennas, an effect that is akin to scattering in continuous films. Moreover, our results suggest that tunable directional scattering is possible in these structures.

     
    more » « less
  2. Terahertz (THz) sciences and technologies have contributed to a rapid development of a wide range of applications and expanded the frontiers in fundamental science. Spintronic terahertz emitters offer conceptual advantages since the spin orientation in the magnetic layer can be easily controlled either by the externally applied magnetic field or by the internal magnetic field distribution determined by the specific shape of the magnetic elements. Here, we report a switchable terahertz source based on micropatterned magnetic heterostructures driven by femtosecond laser pulses. We show that the precise tunability of the polarization state is facilitated by the underlying magnetization texture of the magnetic layer that is dictated by the shape of the microstructure. These results also reveal the underlying physical mechanisms of a nonuniform magnetization state on the generation of ultrafast spin currents in the magnetic heterostructures. Our findings indicate that the emission of the linearly polarized THz waves can be switched on and off by saturating the sample using a biasing magnetic field, opening fascinating perspectives for integrated on-chip THz devices with wide-ranging potential applications. 
    more » « less
  3. Noble-transition metal alloys offer emergent optical and electronic properties for near-infrared (NIR) optoelectronic devices. We investigate the optical and electronic properties of CuxPd1−x alloy thin films and their ultrafast electron dynamics under NIR excitation. Ultraviolet photoelectron spectroscopy measurements supported by density functional theory calculations show strong d-band hybridization between the Cu 3d and Pd 4d bands. These hybridization effects result in emergent optical properties, most apparent in the dilute Pd case. Time-resolved terahertz spectroscopy with NIR (e.g., 1550 nm) excitation displays composition-tunable electron dynamics. We posit that the negative peak in the normalized increment of transmissivity (ΔT/T) below 2 ps from dilute Pd alloys is due to non-thermalized hot-carrier generation. On the other hand, Pd-rich alloys exhibit an increase in ΔT/T due to thermalization effects upon ultrafast NIR photoexcitation. CuxPd1−x alloys in the dilute Pd regime may be a promising material for future ultrafast NIR optoelectronic devices.

     
    more » « less