skip to main content


Search for: All records

Creators/Authors contains: "Leonard, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The past 75 years has been an exciting and dynamic time for solid-state electronic materials with advanced micro- and optoelectronic properties but point defects at semiconductor–metal interfaces that limit their operation have been a challenge to understand and control. These defects depend strongly on chemical structure at the intimate interface, and techniques have now developed to learn how their presence at nanoscale dimensions impact electronic structure at the macroscale. A combination of optical, electronic, and microscopic techniques can now enable new directions for defect research of metal–semiconductor interfaces at the nano/atomic scale. These nanoscale and atomic scale techniques can meet the experimental challenges inherent at this scale and create opportunities for new defect research of electronic material interfaces at a deeper level.

    Graphical Abstract

     
    more » « less
  2. Photomechanical molecular crystals have garnered attention for their ability to transform light into mechanical work, but difficulties in characterizing the structural changes and mechanical responses experimentally have hindered the development of practical organic crystal engines. This study proposes a new computational framework for predicting the solid-state crystal-to-crystal photochemical transformations entirely from first principles, and it establishes a photomechanical engine cycle that quantifies the anisotropic mechanical performance resulting from the transformation. The approach relies on crystal structure prediction, solid-state topochemical principles, and high-quality electronic structure methods. After validating the framework on the well-studied [4 + 4] cycloadditions in 9-methyl anthracene and 9- tert -butyl anthracene ester, the experimentally-unknown solid-state transformation of 9-carboxylic acid anthracene is predicted for the first time. The results illustrate how the mechanical work is done by relaxation of the crystal lattice to accommodate the photoproduct, rather than by the photochemistry itself. The large ∼10 7 J m −3 work densities computed for all three systems highlight the promise of photomechanical crystal engines. This study demonstrates the importance of crystal packing in determining molecular crystal engine performance and provides tools and insights to design improved materials in silico . 
    more » « less
  3. Abstract

    Ribosomes of Bacteroidia (formerly Bacteroidetes) fail to recognize Shine-Dalgarno (SD) sequences even though they harbor the anti-SD (ASD) of 16S rRNA. Inhibition of SD-ASD pairing is due to sequestration of the 3’ tail of 16S rRNA in a pocket formed by bS21, bS18, and bS6 on the 30S platform. Interestingly, in many Flavobacteriales, the gene encoding bS21, rpsU, contains an extended SD sequence. In this work, we present genetic and biochemical evidence that bS21 synthesis in Flavobacterium johnsoniae is autoregulated via a subpopulation of ribosomes that specifically lack bS21. Mutation or depletion of bS21 in the cell increases translation of reporters with strong SD sequences, such as rpsU’-gfp, but has no effect on other reporters. Purified ribosomes lacking bS21 (or its C-terminal region) exhibit higher rates of initiation on rpsU mRNA and lower rates of initiation on other (SD-less) mRNAs than control ribosomes. The mechanism of autoregulation depends on extensive pairing between mRNA and 16S rRNA, and exceptionally strong SD sequences, with predicted pairing free energies of < –13 kcal/mol, are characteristic of rpsU across the Bacteroidota. This work uncovers a clear example of specialized ribosomes in bacteria.

     
    more » « less
  4. Abstract Structural health monitoring (SHM) is the automation of the condition assessment process of an engineered system. When applied to geometrically large components or structures, such as those found in civil and aerospace infrastructure and systems, a critical challenge is in designing the sensing solution that could yield actionable information. This is a difficult task to conduct cost-effectively, because of the large surfaces under consideration and the localized nature of typical defects and damages. There have been significant research efforts in empowering conventional measurement technologies for applications to SHM in order to improve performance of the condition assessment process. Yet, the field implementation of these SHM solutions is still in its infancy, attributable to various economic and technical challenges. The objective of this Roadmap publication is to discuss modern measurement technologies that were developed for SHM purposes, along with their associated challenges and opportunities, and to provide a path to research and development efforts that could yield impactful field applications. The Roadmap is organized into four sections: distributed embedded sensing systems, distributed surface sensing systems, multifunctional materials, and remote sensing. Recognizing that many measurement technologies may overlap between sections, we define distributed sensing solutions as those that involve or imply the utilization of numbers of sensors geometrically organized within (embedded) or over (surface) the monitored component or system. Multi-functional materials are sensing solutions that combine multiple capabilities, for example those also serving structural functions. Remote sensing are solutions that are contactless, for example cell phones, drones, and satellites. It also includes the notion of remotely controlled robots. 
    more » « less
  5. While the properties of β-Ga2O3 continue to be extensively studied for high-power applications, the effects of strong electric fields on the Ga2O3 microstructure and, in particular, the impact of electrically active native point defects have been relatively unexplored. We used cathodoluminescence point spectra and hyperspectral imaging to explore possible nanoscale movements of electrically charged defects in Ga2O3 vertical trench power diodes and observed the spatial rearrangement of optically active defects under strong reverse bias. These observations suggest an unequal migration of donor-related defects in β-Ga2O3 due to the applied electric field. The atomic rearrangement and possible local doping changes under extreme electric fields in β-Ga2O3 demonstrate the potential impact of nanoscale device geometry in other high-power semiconductor devices.

     
    more » « less
  6. Most high-quality quantum dots (QDs) are synthesized in the organic phase, and are often coated with polymers for use in aqueous biological environments. QDs can exhibit fluorescence losses during phase transfer, but evaluating underlying mechanisms ( e.g. , oxidation, surface etching, loss of colloidal stability) can be challenging because of variation in synthesis methods. Here, fluorescence stability of QDs encapsulated in block co-polymer (BCP) micelles was investigated as a function of BCP terminal functionalization ( i.e. , –OH, –COOH, and –NH 2 groups) and synthesis method ( i.e. , electrohydrodynamic emulsification-mediated selfassembly (EE-SA), sonication, and manual shaking). Fluorescence losses, fluorescence intensity, energy spectra, and surface composition were assessed using spectrofluorometry and cathodoluminescence spectroscopy (CL) with integrated X-ray photoemission spectroscopy (XPS). QDs passivated using charged BCPs exhibited 50–80% lower fluorescence intensity than those displaying neutral groups ( e.g. , –OH), which CL/XPS revealed to result from oxidation of surface Cd to CdO. Fluorescence losses were higher for processes with slow formation speed, but minimized in the presence of poly(vinyl alcohol) (PVA) surfactant. These data suggest slower BCP aggregation kinetics rather than electrostatic chain repulsion facilitated QD oxidation. Thus, polymer coating method and BCP structure influence QD oxidation during phase transfer and should be selected to maximize fast aggregation kinetics. 
    more » « less
  7. In the Euclidean k-Means problem we are given a collection of n points D in an Euclidean space and a positive integer k. Our goal is to identify a collection of k points in the same space (centers) so as to minimize the sum of the squared Euclidean distances between each point in D and the closest center. This problem is known to be APX-hard and the current best approximation ratio is a primal-dual 6.357 approximation based on a standard LP for the problem [Ahmadian et al. FOCS'17, SICOMP'20]. In this note we show how a minor modification of Ahmadian et al.'s analysis leads to a slightly improved 6.12903 approximation. As a related result, we also show that the mentioned LP has integrality gap at least (16+Sqrt(5))/15 > 1.2157. . 
    more » « less