skip to main content


Search for: All records

Creators/Authors contains: "Lewis, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Telecystoscopy can lower the barrier to access critical urologic diagnostics for patients around the world. A major challenge for robotic control of flexible cystoscopes and intuitive teleoperation is the pose estimation of the scope tip. We propose a novel real-time camera localization method using video recordings from a prior cystoscopy and 3D bladder reconstruction to estimate cystoscope pose within the bladder during follow-up telecystoscopy. We map prior video frames into a low-dimensional space as a dictionary so that a new image can be likewise mapped to efficiently retrieve its nearest neighbor among the dictionary images. The cystoscope pose is then estimated by the correspondence among the new image, its nearest dictionary image, and the prior model from 3D reconstruction. We demonstrate performance of our methods using bladder phantoms with varying fidelity and a servo-controlled cystoscope to simulate the use case of bladder surveillance through telecystoscopy. The servo-controlled cystoscope with 3 degrees of freedom (angulation, roll, and insertion axes) was developed for collecting cystoscope videos from bladder phantoms. Cystoscope videos were acquired in a 2.5D bladder phantom (bladder-shape cross-section plus height) with a panorama of a urothelium attached to the inner surface. Scans of the 2.5D phantom were performed in separate arc trajectories each of which is generated by actuation on the angulation with a fixed roll and insertion length. We further included variance in moving speed, imaging distance and existence of bladder tumors. Cystoscope videos were also acquired in a water-filled 3D silicone bladder phantom with hand-painted vasculature. Scans of the 3D phantom were performed in separate circle trajectories each of which is generated by actuation on the roll axis under a fixed angulation and insertion length. These videos were used to create 3D reconstructions, dictionary sets, and test data sets for evaluating the computational efficiency and accuracy of our proposed method in comparison with a method based on global Scale-Invariant Feature Transform (SIFT) features, named SIFT-only. Our method can retrieve the nearest dictionary image for 94–100% of test frames in under 55[Formula: see text]ms per image, whereas the SIFT-only method can only find the image match for 56–100% of test frames in 6000–40000[Formula: see text]ms per image depending on size of the dictionary set and richness of SIFT features in the images. Our method, with a speed of around 20 Hz for the retrieval stage, is a promising tool for real-time image-based scope localization in robotic cystoscopy when prior cystoscopy images are available. 
    more » « less
  2. null (Ed.)
    Robot-assisted minimally invasive surgery has made a substantial impact in operating rooms over the past few decades with their high dexterity, small tool size, and impact on adoption of minimally invasive techniques. In recent years, intelligence and different levels of surgical robot autonomy have emerged thanks to the medical robotics endeavors at numerous academic institutions and leading surgical robot companies. To accelerate interaction within the research community and prevent repeated development, we propose the Collaborative Robotics Toolkit (CRTK), a common API for the RAVEN-II and da Vinci Research Kit (dVRK) - two open surgical robot platforms installed at more than 40 institutions worldwide. CRTK has broadened to include other robots and devices, including simulated robotic systems and industrial robots. This common API is a community software infrastructure for research and education in cutting edge human-robot collaborative areas such as semi-autonomous teleoperation and medical robotics. This paper presents the concepts, design details and the integration of CRTK with physical robot systems and simulation platforms. 
    more » « less
  3. null (Ed.)
    Robot-assisted minimally invasive surgery has made a substantial impact in operating rooms over the past few decades with their high dexterity, small tool size, and impact on adoption of minimally invasive techniques. In recent years, intelligence and different levels of surgical robot autonomy have emerged thanks to the medical robotics endeavors at numerous academic institutions and leading surgical robot companies. To accelerate interaction within the research community and prevent repeated development, we propose the Collaborative Robotics Toolkit (CRTK), a common API for the RAVEN-II and da Vinci Research Kit (dVRK) - two open surgical robot platforms installed at more than 40 institutions worldwide. CRTK has broadened to include other robots and devices, including simulated robotic systems and industrial robots. This common API is a community software infrastructure for research and education in cutting edge human-robot collaborative areas such as semi-autonomous teleoperation and medical robotics. This paper presents the concepts, design details and the integration of CRTK with physical robot systems and simulation platforms. 
    more » « less
  4. Surgical robot research is driven by the desire of improving surgical outcomes. This paper proposed a Recurrent Neural Network based controller to address two problems: 1) improving control precision, 2) increasing adaptiveness for robot motion (explained in Section I). RNN was adopted in this work mainly because 1) the problem formulation naturally matches RNN structure, 2) RNN has advantages as an biologi- cally inspired method. The proposed method was explained in detail and analysis shows that the proposed method is able to dynamically regulate outputs to increase the adaptiveness and the control precision. This paper uses Raven II surgical robot as an example to show the application of the proposed method, and the numeral simulation results from the proposed method and three other controllers show that the proposed method has improved precision, improved high robustness against noise and increased movement smoothness, and it keeps the manipulator links as far away as possible from physical boundaries, which potentially increases surgical safety and leads to improved surgical outcomes. 
    more » « less