skip to main content


Search for: All records

Creators/Authors contains: "Li, Dongfeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The identification of flood hazards during emerging public safety crises such as hurricanes or flash floods is an invaluable tool for first responders and managers yet remains out of reach in any comprehensive sense when using traditional remote-sensing methods, due to cloud cover and other data-sourcing restrictions. While many remote-sensing techniques exist for floodwater identification and extraction, few studies demonstrate an up-to-day understanding with better techniques in isolating the spectral properties of floodwaters from collected data, which vary for each event. This study introduces a novel method for delineating near-real-time inundation flood extent and depth mapping for storm events, using an inexpensive unmanned aerial vehicle (UAV)-based multispectral remote-sensing platform, which was designed to be applicable for urban environments, under a wide range of atmospheric conditions. The methodology is demonstrated using an actual flooding-event—Hurricane Zeta during the 2020 Atlantic hurricane season. Referred to as the UAV and Floodwater Inundation and Depth Mapper (FIDM), the methodology consists of three major components, including aerial data collection, processing, and flood inundation (water surface extent) and depth mapping. The model results for inundation and depth were compared to a validation dataset and ground-truthing data, respectively. The results suggest that UAV-FIDM is able to predict inundation with a total error (sum of omission and commission errors) of 15.8% and produce flooding depth estimates that are accurate enough to be actionable to determine road closures for a real event.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Many radar-gauge merging methods have been developed to produce improved rainfall data by leveraging the advantages of gauge and radar observations. Two popular merging methods, Regression Kriging and Bayesian Regression Kriging were utilized and compared in this study to produce hourly rainfall data from gauge networks and multi-source radar datasets. The authors collected, processed, and modeled the gauge and radar rainfall data (Stage IV, MRMS and RTMA radar data) of the two extreme storm events (i.e., Hurricane Harvey in 2017 and Tropical Storm Imelda in 2019) occurring in the coastal area in Southeast Texas with devastating flooding. The analysis of the modeled data on consideration of statistical metrics, physical rationality, and computational expenses, implies that while both methods can effectively improve the radar rainfall data, the Regression Kriging model demonstrates its superior performance over that of the Bayesian Regression Kriging model since the latter is found to be prone to overfitting issues due to the clustered gauge distributions. Moreover, the spatial resolution of rainfall data is found to affect the merging results significantly, where the Bayesian Regression Kriging model works unskillfully when radar rainfall data with a coarser resolution is used. The study recommends the use of high-quality radar data with properly spatial-interpolated gauge data to improve the radar-gauge merging methods. The authors believe that the findings of the study are critical for assisting hazard mitigation and future design improvement. 
    more » « less
  3. Numerous algorithms have been developed to automate the process of delineating water surface maps for flood monitoring and mitigation purposes by using multiple sources such as satellite sensors and digital elevation model (DEM) data. To better understand the causes of inaccurate mapping information, we aim to demonstrate the advantages and limitations of these algorithms through a case study of the 2022 Madagascar flooding event. The HYDRAFloods toolbox was used to perform preprocessing, image correction, and automated flood water detection based on the state-of-the-art Edge Otsu, Bmax Otsu, and Fuzzy Otsu algorithms for the satellite images; the FwDET tool was deployed upon the cloud computing platform (Google Earth Engine) for rapid estimation of flood area/depth using the digital elevation model (DEM) data. Generated surface water maps from the respective techniques were evaluated qualitatively against each other and compared with a reference map produced by the European Union Copernicus Emergency Management Service (CEMS). The DEM-based maps show generally overestimated flood extents. The satellite-based maps show that Edge Otsu and Bmax Otsu methods are more likely to generate consistent results than those from Fuzzy Otsu. While the synthetic-aperture radar (SAR) data are typically favorable over the optical image under undesired weather conditions, maps generated based on SAR data tend to underestimate the flood extent as compared with reference maps. This study also suggests the newly launched Landsat-9 serves as an essential supplement to the rapid delineation of flood extents. 
    more » « less
  4. Heavy rainfall leads to severe flooding problems with catastrophic socio-economic impacts worldwide. Hydrologic forecasting models have been applied to provide alerts of extreme flood events and reduce damage, yet they are still subject to many uncertainties due to the complexity of hydrologic processes and errors in forecasted timing and intensity of the floods. This study demonstrates the efficacy of using eXtreme Gradient Boosting (XGBoost) as a state-of-the-art machine learning (ML) model to forecast gauge stage levels at a 5-min interval with various look-out time windows. A flood alert system (FAS) built upon the XGBoost models is evaluated by two historical flooding events for a flood-prone watershed in Houston, Texas. The predicted stage values from the FAS are compared with observed values with demonstrating good performance by statistical metrics (RMSE and KGE). This study further compares the performance from two scenarios with different input data settings of the FAS: (1) using the data from the gauges within the study area only and (2) including the data from additional gauges outside of the study area. The results suggest that models that use the gauge information within the study area only (Scenario 1) are sufficient and advantageous in terms of their accuracy in predicting the arrival times of the floods. One of the benefits of the FAS outlined in this study is that the XGBoost-based FAS can run in a continuous mode to automatically detect floods without requiring an external starting trigger to switch on as usually required by the conventional event-based FAS systems. This paper illustrates a data-driven FAS framework as a prototype that stakeholders can utilize solely based on their gauging information for local flood warning and mitigation practices. 
    more » « less
  5. Meteorological and subsurface factors influence pavement’s response to cold fronts. Prediction of pavement temperature, particularly icing, is important to winter pavement maintenance which relies on an estimated time for the formation of ice. However, the prediction development is limited by test data on pavement icing. A model column consisting of soil samples and a concrete pavement slab retrieved from the Dallas Fort Worth airport was used to replicate the airport pavement structure, including subgrade. The soil was classified using USCS, tested for optimum moisture content and compacted in lifts in the column. Thermistors and moisture sensors were placed at different depths. The pavement slab was fitted with temperature sensors throughout. The system was installed in a freezer box,wrapped in insulation and plastic. Three cold front scenarios were selected from observed airport weather data and simulated in the freezer box using varying rates of temperature decrease and precipitation. The formation of ice on a pavement surface was observed at 10–20 min after the start of precipitation. This time frame is not affected by the freezer box cooling rate. The icing time found from this study is useful for the development of prediction models for icing on pavements. 
    more » « less
  6. Wastewater-based epidemiology has played a significant role in monitoring the COVID-19 pandemic, yet little is known about degradation of SARS-CoV-2 in sewer networks. Here, we used advanced sewershed modeling software to simulate SARS-CoV-2 RNA degradation in sewersheds across Houston, TX under various temperatures and decay rates. Moreover, a novel metric, population times travel time ( PT ), was proposed to identify localities with a greater likelihood of undetected COVID-19 outbreaks and to aid in the placement of upstream samplers. Findings suggest that travel time has a greater influence on RNA degradation across the sewershed as compared to temperature. SARS-CoV-2 RNA degradation at median travel times was approximately two times greater in 20 °C wastewater between the small sewershed, Chocolate Bayou, and the larger sewershed, 69th Street. Lastly, placement of upstream samplers according to the PT metric can provide a more representative snapshot of disease incidence in large sewersheds. This study helps to elucidate discrepancies between SARS-CoV-2 viral load in wastewater and clinical incidence of COVID-19. Incorporating travel time and SARS-CoV-2 RNA decay can improve wastewater surveillance efforts. 
    more » « less
  7. Rivers originating in High Mountain Asia are crucial lifelines for one-third of the world’s population. These fragile headwaters are now experiencing amplified climate change, glacier melt, and permafrost thaw. Observational data from 28 headwater basins demonstrate substantial increases in both annual runoff and annual sediment fluxes across the past six decades. The increases are accelerating from the mid-1990s in response to a warmer and wetter climate. The total sediment flux from High Mountain Asia is projected to more than double by 2050 under an extreme climate change scenario. These findings have far-reaching implications for the region’s hydropower, food, and environmental security. 
    more » « less