skip to main content


Search for: All records

Creators/Authors contains: "Li, Xiuling"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding the thermal stability and degradation mechanism of β-Ga2O3 metal-oxide-semiconductor field-effect transistors (MOSFETs) is crucial for their high-power electronics applications. This work examines the high temperature performance of the junctionless lateral β-Ga2O3 FinFET grown on a native β-Ga2O3 substrate, fabricated by metal-assisted chemical etching with Al2O3 gate oxide and Ti/Au gate metal. The thermal exposure effect on threshold voltage (Vth), subthreshold swing (SS), hysteresis, and specific on-resistance (Ron,sp), as a function of temperature up to 298 °C, is measured and analyzed. SS and Ron,sp increased with increasing temperatures, similar to the planar MOSFETs, while a more severe negative shift of Vth was observed for the high aspect-ratio FinFETs here. Despite employing a much thicker epilayer (∼2 μm) for the channel, the high temperature performance of Ion/Ioff ratios and SS of the FinFET in this work remains comparable to that of the planar β-Ga2O3 MOSFETs reported using epilayers ∼10–30× thinner. This work paves the way for further investigation into the stability and promise of β-Ga2O3 FinFETs compared to their planar counterparts. 
    more » « less
    Free, publicly-accessible full text available July 24, 2024
  2. In this work, β-Ga 2 O 3 fin field-effect transistors (FinFETs) with metalorganic chemical vapor deposition grown epitaxial Si-doped channel layer on (010) semi-insulating β-Ga 2 O 3 substrates are demonstrated. β-Ga 2 O 3 fin channels with smooth sidewalls are produced by the plasma-free metal-assisted chemical etching (MacEtch) method. A specific on-resistance (R on,sp ) of 6.5 mΩ·cm 2 and a 370 V breakdown voltage are achieved. In addition, these MacEtch-formed FinFETs demonstrate DC transfer characteristics with near zero (9.7 mV) hysteresis. The effect of channel orientation on threshold voltage, subthreshold swing, hysteresis, and breakdown voltages is also characterized. The FinFET with channel perpendicular to the [102] direction is found to exhibit the lowest subthreshold swing and hysteresis. 
    more » « less
  3. Abstract

    On-chip manipulation of charged particles using electrophoresis or electroosmosis is widely used for many applications, including optofluidic sensing, bioanalysis and macromolecular data storage. We hereby demonstrate a technique for the capture, localization, and release of charged particles and DNA molecules in an aqueous solution using tubular structures enabled by a strain-induced self-rolled-up nanomembrane (S-RuM) platform. Cuffed-in 3D electrodes that are embedded in cylindrical S-RuM structures and biased by a constant DC voltage are used to provide a uniform electrical field inside the microtubular devices. Efficient charged-particle manipulation is achieved at a bias voltage of <2–4 V, which is ~3 orders of magnitude lower than the required potential in traditional DC electrophoretic devices. Furthermore, Poisson–Boltzmann multiphysics simulation validates the feasibility and advantage of our microtubular charge manipulation devices over planar and other 3D variations of microfluidic devices. This work lays the foundation for on-chip DNA manipulation for data storage applications.

     
    more » « less
  4.  
    more » « less