skip to main content


Search for: All records

Creators/Authors contains: "Li, Z-Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Radial substructures have now been observed in a wide range of protoplanetary discs (PPDs), from young to old systems; however, their formation is still an area of vigorous debate. Recent magnetohydrodynamic (MHD) simulations have shown that rings and gaps can form naturally in PPDs when non-ideal MHD effects are included. However, these simulations employ ad hoc approximations to the magnitudes of the magnetic diffusivities in order to facilitate ring growth. We replace the parametrization of these terms with a simple chemical network and grain distribution model to calculate the non-ideal effects in a more self-consistent way. We use a range of grain distributions to simulate grain formation for different disc conditions. Including ambipolar diffusion, we find that large grain populations (>1 $\mu$m), and those including a population of very small polyaromatic hydrocarbons (PAHs) facilitate the growth of periodic, stable rings, while intermediate-sized grains suppress ring formation. Including Ohmic diffusion removes the positive influence of PAHs, with only large grain populations still producing periodic ring and gap structures. These results relate closely to the degree of coupling between the magnetic field and the neutral disc material, quantified by the non-dimensional Elsasser number Λ (the ratio of magnetic forces to Coriolis force). For both the ambipolar-only and ambipolar-ohmic cases, if the total Elsasser number is initially of the order of unity along the disc mid-plane, ring and gap structures may develop.

     
    more » « less
  2. Abstract Magnetic fields have an important role in the evolution of interstellar medium and star formation 1,2 . As the only direct probe of interstellar field strength, credible Zeeman measurements remain sparse owing to the lack of suitable Zeeman probes, particularly for cold, molecular gas 3 . Here we report the detection of a magnetic field of +3.8 ± 0.3 microgauss through the H  I narrow self-absorption (HINSA) 4,5 towards L1544 6,7 —a well-studied prototypical prestellar core in an early transition between starless and protostellar phases 8–10 characterized by a high central number density 11 and a low central temperature 12 . A combined analysis of the Zeeman measurements of quasar H  I absorption, H  I emission, OH emission and HINSA reveals a coherent magnetic field from the atomic cold neutral medium (CNM) to the molecular envelope. The molecular envelope traced by the HINSA is found to be magnetically supercritical, with a field strength comparable to that of the surrounding diffuse, magnetically subcritical CNM despite a large increase in density. The reduction of the magnetic flux relative to the mass, which is necessary for star formation, thus seems to have already happened during the transition from the diffuse CNM to the molecular gas traced by the HINSA. This is earlier than envisioned in the classical picture where magnetically supercritical cores capable of collapsing into stars form out of magnetically subcritical envelopes 13,14 . 
    more » « less
  3. null (Ed.)
    ABSTRACT Of all the factors that influence star formation, magnetic fields are perhaps the least well understood. The goal of this paper is to characterize the 3D magnetic field properties of nearby molecular clouds through various methods of statistically analysing maps of polarized dust emission. Our study focuses on nine clouds, with data taken from the Planck Sky Survey as well as data from the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry observations of Vela C. We compare the distributions of polarization fraction (p), dispersion in polarization angles ($\mathcal {S}$), and hydrogen column density (NH) for each of our targeted clouds. To broaden the scope of our analysis, we compare the distributions of our clouds’ polarization observables with measurements from synthetic polarization maps generated from numerical simulations. We also use the distribution of polarization fraction measurements to estimate the inclination angle of each cloud’s cloud-scale magnetic field. We obtain a range of inclination angles associated with our clouds, varying from 16○ to 69○. We establish inverse correlations between p and both $\mathcal {S}$ and NH in almost every cloud, but we are unable to establish a statistically robust $\mathcal {S}$ versus NH trend. By comparing the results of these different statistical analysis techniques, we are able to propose a more comprehensive view of each cloud’s 3D magnetic field properties. These detailed cloud analyses will be useful in the continued studies of cloud-scale magnetic fields and the ways in which they affect star formation within these molecular clouds. 
    more » « less
  4. null (Ed.)