skip to main content


Search for: All records

Creators/Authors contains: "Lin, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Abstract

    The superτ-charm facility (STCF) is an electron–positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035cm−2·s−1or higher. The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  3. Nucleation of clathrate hydrates at low temperatures is constrained by very long induction (wait) times, which can range from hours to days. Electronucleation (application of an electrical potential difference across the hydrate forming solution) can significantly reduce the induction time. This work studies the use of porous open-cell foams of various materials as electronucleation electrodes. Experiments with tetrahydrofuran (THF) hydrates reveal that aluminum and carbon foam electrodes can enable voltage-dependent nucleation, with induction times dependent on the ionization tendency of the foam material. Furthermore, we observe a non-trivial dependence of the electronucleation parameters such as induction time and the recalescence temperature on the water:THF molar ratio. This study further corroborates previously developed hypotheses which associated rapid hydrate nucleation with the formation of metal-ion coordination compounds. Overall, this work studies various aspects of electronucleation with aluminum and carbon foams. 
    more » « less
  4. Nucleation of hydrates is constrained by very long induction (wait) times, which can range from hours to days. Electronucleation (application of an electrical potential across the precursor solution) can significantly reduce the induction time for nucleation. This study shows that porous aluminum foams (open-cell) enable near-instantaneous electronucleation at very low voltages. Experiments with tetrahydrofuran hydrates reveal that aluminum foam electrodes enable voltage-dependent nucleation with induction times of only tens of seconds at voltages as low as 20 V. Foam-based electrodes can reduce the induction time by up to 150X when compared to non-foam electrodes. Furthermore, this study reveals that electronucleation can be attributed to two distinct phenomena, namely bubble generation (due to electrolysis), and the formation of metal-ion coordination compounds. These mechanisms affect the induction time to different extents and depend on electrode material and polarity. Overall, this work uncovers the benefits of using foams for formation of hydrates, with foams aiding nucleation as well as propagation of the hydrate formation front. 
    more » « less
  5. Abstract

    Thermospheric mass density perturbations are commonly observed during geomagnetic storms and fundamental to upper atmosphere dynamics, but the sources of these perturbations are not well understood. Large neutral density perturbations during storms greatly affect the drag experienced by low Earth orbit. We investigated the thermospheric density perturbations at all latitudes observed along the CHAMP and GRACE satellite trajectories during the August 24–25, 2005 geomagnetic storm. Observations show that large neutral density enhancements occurred not only at high latitudes, but also globally. Large density perturbations were seen in the equatorial regions away from the high‐latitude, magnetospheric energy sources. We used the high‐resolution Multiscale Atmosphere Geospace Environment (MAGE) model to simulate consecutive neutral density changes observed by satellites during the storm. The MAGE simulation, which resolved mesoscale high‐latitude convection electric fields and field‐aligned currents, and included physics‐based specification of auroral precipitation, was contrasted with a standalone ionosphere‐thermosphere simulation driven by a high‐latitude electrodynamics empirical model. The comparison demonstrates that first‐principles representations of highly dynamic and localized Joule heating events in a fully coupled whole geospace model is critical to accurately capture both generation and propagation of traveling atmospheric disturbances (TADs) that produce neutral density perturbations globally. The MAGE simulation shows that larger density peaks in the equatorial region observed by CHAMP and GRACE are the result of TADs generated at high‐latitudes in both hemispheres, and intersect at low‐latitudes. This study reveals the importance of investigating thermospheric density variations at all latitudes in a fully coupled geospace model with sufficiently high resolving power.

     
    more » « less
  6. Abstract

    Long‐lasting Pc5 ultralow frequency (ULF) waves spanning the dayside and extending fromL ∼ 5.5into the polar cap region were observed by conjugate ground magnetometers. Observations from MMS satellites in the magnetosphere and magnetometers on the ground confirmed that the ULF waves on closed field lines were due to fundamental toroidal standing Alfvén waves. Monochromatic waves at lower latitudes tended to maximize their power away from noon in both the morning and afternoon sectors, while more broadband waves at higher latitudes tended to have a wave power maximum near noon. The wave power distribution and MMS satellite observations during the magnetopause crossing indicate surface waves on a Kelvin‐Helmholtz (KH) unstable magnetopause coupled with standing Alfvén waves. The more turbulent ion foreshock during an extended period of radial interplanetary magnetic field (IMF) likely plays an important role in providing seed perturbations for the growth of the KH waves. These results indicate that the Pc5 waves observed on closed field lines and on the open field lines of the polar cap were from the same source.

     
    more » « less
  7. Abstract

    Understanding the physical mechanisms responsible for the cross‐scale energy transport and plasma heating from solar wind into the Earth's magnetosphere is of fundamental importance for magnetospheric physics and for understanding these processes in other places in the universe with comparable plasma parameter ranges. This paper presents observations from the Magnetosphere Multiscale (MMS) mission at the dawn‐side high‐latitude dayside boundary layer on February 25, 2016 between 18:55 and 20:05 UT. During this interval, MMS encountered both the inner and outer boundary layers with quasiperiodic low frequency fluctuations in all plasma and field parameters. The frequency analysis and growth rate calculations are consistent with the Kelvin‐Helmholtz instability (KHI). The intervals within the low frequency wave structures contained several counter‐streaming, low‐ (0–200 eV) and mid‐energy (200 eV–2 keV) electrons in the loss cone and trapped energetic (70–600 keV) electrons in alternate intervals. The counter‐streaming electron intervals were associated with large‐magnitude field‐aligned Poynting fluxes. Burst mode data at the large Alfvén velocity gradient revealed a strong correlation between counter streaming electrons, enhanced parallel electron temperatures, strong anti‐field aligned wave Poynting fluxes, and wave activity from sub‐proton cyclotron frequencies extending to electron cyclotron frequency. Waves were identified as Kinetic Alfvén waves but their contribution to parallel electron heating was not sufficient to explain the >100 eV electrons.

     
    more » « less