skip to main content


Search for: All records

Creators/Authors contains: "Linzer, Nora B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    High-accuracy black hole (BH) masses require excellent spatial resolution that is only achievable for galaxies within ∼100 Mpc using present-day technology. At larger distances, BH masses are often estimated with single-epoch scaling relations for active galactic nuclei. This method requires only luminosity and the velocity dispersion of the broad-line region (BLR) to calculate a virial product, and an additional virial factor,f, to determine the BH mass. The accuracy of these single-epoch masses, however, is unknown, and there are few empirical constraints on the variance offbetween objects. We attempt to calibrate single-epoch BH masses using spectropolarimetric measurements of nine megamaser galaxies from which we measure the velocity distribution of the BLR. We do not find strong evidence for a correlation between the virial products used for single-epoch masses and dynamical mass, either for the megamaser sample alone or when it is combined with dynamical masses from reverberation mapping modeling. Furthermore, we find evidence that the virial parameterfvaries between objects, but we do not find strong evidence for a correlation with other observable parameters such as luminosity or broad-line width. Although we cannot definitively rule out the existence of any correlation between dynamical mass and virial product, we find tension between the allowedf-values for masers and those widely used in the literature. We conclude that the single-epoch method requires further investigation if it is to be used successfully to infer BH masses.

     
    more » « less
  2. Abstract One of the primary goals for the upcoming James Webb Space Telescope is to observe the first galaxies. Predictions for planned and proposed surveys have typically focused on average galaxy counts, assuming a random distribution of galaxies across the observed field. The first and most-massive galaxies, however, are expected to be tightly clustered, an effect known as cosmic variance. We show that cosmic variance is likely to be the dominant contribution to uncertainty for high-redshift mass and luminosity functions, and that median high-redshift and high-mass galaxy counts for planned observations lie significantly below average counts. Several different strategies are considered for improving our understanding of the first galaxies, including adding depth, area, and independent pointings. Adding independent pointings is shown to be the most efficient both for discovering the single highest-redshift galaxy and also for constraining mass and luminosity functions. 
    more » « less