skip to main content


Search for: All records

Creators/Authors contains: "Liu, Feng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The earth’s orbit is becoming increasingly crowded with debris that poses significant safety risks to the operation of existing and new spacecraft and satellites. The active tether-net system, which consists of a flexible net with maneuverable corner nodes, launched from a small autonomous spacecraft, is a promising solution to capturing and disposing of such space debris. The requirement of autonomous operation and the need to generalize over debris scenarios in terms of different rotational rates makes the capture process significantly challenging. The space debris could rotate about multiple axes, which along with sensing/estimation and actuation uncertainties, call for a robust, generalizable approach to guiding the net launch and flight – one that can guarantee robust capture. This paper proposes a decentralized actuation system combined with reinforcement learning based on prior work in designing and controlling this tether-net system. In this new system, four microsatellites with thrusters act as the corner nodes of the net, and can thus help control the flight of the net after launch. The microsatellites pull the net to complete the task of approaching and capturing the space debris. The proposed method uses a reinforcement learning framework that integrates a proximal policy optimization to find the optimal solution based on the dynamics simulation of the net and the MUs in Vortex Studio. The reinforcement learning framework finds the optimal trajectory that is both energy-efficient and ensures a desired level of capture quality 
    more » « less
    Free, publicly-accessible full text available June 8, 2024
  2. Free, publicly-accessible full text available November 6, 2024
  3. We give the first constructions in the plain model of 1) nonmalleable digital lockers (Canetti and Varia, TCC 2009) and 2) robust fuzzy extractors (Boyen et al., Eurocrypt 2005) that secure sources with entropy below 1/2 of their length. Constructions were previously only known for both primitives assuming random oracles or a common reference string (CRS). Along the way, we define a new primitive called a nonmalleable point function obfuscation with associated data. The associated data is public but protected from all tampering. We use the same paradigm to then extend this to digital lockers. Our constructions achieve nonmalleability over the output point by placing a CRS into the associated data and using an appropriate non-interactive zero-knowledge proof. Tampering is protected against the input point over low-degree polynomials and over any tampering to the output point and associated data. Our constructions achieve virtual black box security. These constructions are then used to create robust fuzzy extractors that can support low-entropy sources in the plain model. By using the geometric structure of a syndrome secure sketch (Dodis et al., SIAM Journal on Computing 2008), the adversary’s tampering function can always be expressed as a low-degree polynomial; thus, the protection provided by the constructed nonmalleable objects suffices. 
    more » « less
  4. Abstract

    Pepper (Capsicumspp.) is one of the earliest cultivated crops and includes five domesticated species,C. annuumvar.annuum,C. chinense,C. frutescens,C. baccatumvar.pendulumandC. pubescens. Here, we report a pepper graph pan-genome and a genome variation map of 500 accessions from the five domesticatedCapsicumspecies and close wild relatives. We identify highly differentiated genomic regions among the domesticated peppers that underlie their natural variations in flowering time, characteristic flavors, and unique resistances to biotic and abiotic stresses. Domestication sweeps detected inC. annuumvar.annuumandC. baccatumvar.pendulumare mostly different, and the common domestication traits, including fruit size, shape and pungency, are achieved mainly through the selection of distinct genomic regions between these two cultivated species. Introgressions fromC. baccatumintoC. chinenseandC. frutescensare detected, including those providing genetic sources for various biotic and abiotic stress tolerances.

     
    more » « less
  5. Realization of ferromagnetic (FM) interlayer coupling in magnetic topological insulators (TIs) of the MnBi 2 Te 4 family of materials (MBTs) may pave the way for realizing the high-temperature quantum anomalous Hall effect (high- T QAHE). Here we propose a generic dual d-band (DDB) model to elucidate the energy difference (Δ E = E AFM − E FM ) between the AFM and FM coupling in transition-metal (TM)-doped MBTs, where the valence of TMs splits into d-t 2g and d-e g sub-bands. Remarkably, the DDB shows that Δ E is universally determined by the relative position of the dopant (X) and Mn d-e g / t 2g bands, . If Δ E d > 0, then Δ E > 0 and the desired FM coupling is favored. This surprisingly simple rule is confirmed by first-principles calculations of hole-type 3d and 4d TM dopants. Significantly, by applying the DDB model, we predict the high- T QAHE in the V-doped Mn 2 Bi 2 Te 5 , where the Curie temperature is enhanced by doubling of the MnTe layer, while the topological order mitigated by doping can be restored by strain. 
    more » « less
  6. Abstract The organization of chromatin into self-interacting domains is universal among eukaryotic genomes, though how and why they form varies considerably. Here we report a chromosome-scale reference genome assembly of pepper ( Capsicum annuum ) and explore its 3D organization through integrating high-resolution Hi-C maps with epigenomic, transcriptomic, and genetic variation data. Chromatin folding domains in pepper are as prominent as TADs in mammals but exhibit unique characteristics. They tend to coincide with heterochromatic regions enriched with retrotransposons and are frequently embedded in loops, which may correlate with transcription factories. Their boundaries are hotspots for chromosome rearrangements but are otherwise depleted for genetic variation. While chromatin conformation broadly affects transcription variance, it does not predict differential gene expression between tissues. Our results suggest that pepper genome organization is explained by a model of heterochromatin-driven folding promoted by transcription factories and that such spatial architecture is under structural and functional constraints. 
    more » « less
  7. Abstract

    As the thickness of a three-dimensional (3D) topological insulator (TI) becomes comparable to the penetration depth of surface states, quantum tunneling between surfaces turns their gapless Dirac electronic structure into a gapped spectrum. Whether the surface hybridization gap can host topological edge states is still an open question. Herein, we provide transport evidence of 2D topological states in the quantum tunneling regime of a bulk insulating 3D TI BiSbTeSe2. Different from its trivial insulating phase, this 2D topological state exhibits a finite longitudinal conductance at ~2e2/h when the Fermi level is aligned within the surface gap, indicating an emergent quantum spin Hall (QSH) state. The transition from the QSH to quantum Hall (QH) state in a transverse magnetic field further supports the existence of this distinguished 2D topological phase. In addition, we demonstrate a second route to realize the 2D topological state via surface gap-closing and topological phase transition mechanism mediated by a transverse electric field. The experimental realization of the 2D topological phase in a 3D TI enriches its phase diagram and marks an important step toward functionalized topological quantum devices.

     
    more » « less