skip to main content


Search for: All records

Creators/Authors contains: "Liu, Hong-Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the combination of ALMA-IMF and single-dish continuum images from the MUSTANG-2 Galactic Plane Survey (MGPS90) at 3 mm and the Bolocam Galactic Plane Survey (BGPS) at 1 mm. Six and 10 out of the 15 ALMA-IMF fields are combined with MGPS90 and BGPS, respectively. The combination is made via the feathering technique. We used thedendrogramalgorithm throughout the combined images, and performed further analysis in the six fields with the combination in both bands (G012.80, W43-MM1, W43-MM2, W43-MM3, W51-E, W51-IRS2). In these fields, we calculated spectral index maps and used them to separate regions dominated by dust or free–free emission, and then performed further structural analysis. We report the basic physical parameters of the dust-dominated (column densities, masses) and ionized (emission measures, hydrogen ionization photon rates) structures. We also searched for multiscale relations in the dust-dominated structures across the analyzed fields, finding that the fraction of mass in dendrogram leaves (which we label leaf mass efficiency (LME)) as a function of molecular gas column density follows a similar trend: a rapid, exponential-like growth, with maximum values approaching 100% in most cases. The observed behavior of the LME with the gas column is tentatively interpreted as an indicator of large star formation activity within the ALMA-IMF protoclusters. W51-E and G012.80 stand out as cases with comparatively large and reduced potential for further star formation, respectively.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. ABSTRACT

    Investigating the physical and chemical structure of massive star-forming regions is critical for understanding the formation and early evolution of massive stars. We performed a detailed line survey toward six dense cores, named MM1, MM4, MM6, MM7, MM8, and MM11, in the G9.62+0.19 star-forming region resolved in Atacama Large Millimeter/submillimeter Array (ALMA) band 3 observations. Toward these cores, about 172 transitions have been identified and attributed to 16 species, including organic oxygen-, nitrogen-, and sulphur-bearing molecules and their isotopologues. Four dense cores, MM7, MM8, MM4, and MM11, are line-rich sources. Modelling of these spectral lines reveals that the rotational temperature lies in the range 72–115, 100–163, 102–204, and 84–123 K for MM7, MM8, MM4, and MM11, respectively. The molecular column densities are 1.6 × 1015–9.2 × 1017 cm−2 toward the four cores. The cores MM8 and MM4 show a chemical difference between oxygen- and nitrogen-bearing species, i.e. MM4 is rich in oxygen-bearing molecules, while nitrogen-bearing molecules, especially vibrationally excited HC3N lines, are mainly observed in MM8. The distinct initial temperatures at the accretion phase may lead to this N/O differentiation. Through analysing column densities and spatial distributions of O-bearing complex organic molecules (COMs), we found that C2H5OH and CH3OCH3 might have a common precursor, CH3OH. CH3OCHO and CH3OCH3 are likely chemically linked. In addition, the observed variation in HC3N and HC5N emission may indicate their different formation mechanisms in hot and cold regions.

     
    more » « less
  3. ABSTRACT

    We investigate the presence of hub-filament systems in a large sample of 146 active proto-clusters, using H13CO+ J = 1-0 molecular line data obtained from the ATOMS survey. We find that filaments are ubiquitous in proto-clusters, and hub-filament systems are very common from dense core scales (∼0.1 pc) to clump/cloud scales (∼1–10 pc). The proportion of proto-clusters containing hub-filament systems decreases with increasing dust temperature (Td) and luminosity-to-mass ratios (L/M) of clumps, indicating that stellar feedback from H ii regions gradually destroys the hub-filament systems as proto-clusters evolve. Clear velocity gradients are seen along the longest filaments with a mean velocity gradient of 8.71 km s−1 pc−1 and a median velocity gradient of 5.54 km s−1 pc−1. We find that velocity gradients are small for filament lengths larger than ∼1 pc, probably hinting at the existence of inertial inflows, although we cannot determine whether the latter are driven by large-scale turbulence or large-scale gravitational contraction. In contrast, velocity gradients below ∼1 pc dramatically increase as filament lengths decrease, indicating that the gravity of the hubs or cores starts to dominate gas infall at small scales. We suggest that self-similar hub-filament systems and filamentary accretion at all scales may play a key role in high-mass star formation.

     
    more » « less
  4. ABSTRACT The ATOMS, standing for ALMA Three-millimeter Observations of Massive Star-forming regions, survey has observed 146 active star-forming regions with ALMA band 3, aiming to systematically investigate the spatial distribution of various dense gas tracers in a large sample of Galactic massive clumps, to study the roles of stellar feedback in star formation, and to characterize filamentary structures inside massive clumps. In this work, the observations, data analysis, and example science of the ATOMS survey are presented, using a case study for the G9.62+0.19 complex. Toward this source, some transitions, commonly assumed to trace dense gas, including CS J = 2−1, HCO+J = 1−0, and HCN J = 1−0, are found to show extended gas emission in low-density regions within the clump; less than 25 per cent of their emission is from dense cores. SO, CH3OH, H13CN, and HC3N show similar morphologies in their spatial distributions and reveal well the dense cores. Widespread narrow SiO emission is present (over ∼1 pc), which may be caused by slow shocks from large–scale colliding flows or H ii regions. Stellar feedback from an expanding H ii region has greatly reshaped the natal clump, significantly changed the spatial distribution of gas, and may also account for the sequential high-mass star formation in the G9.62+0.19 complex. The ATOMS survey data can be jointly analysed with other survey data, e.g. MALT90, Orion B, EMPIRE, ALMA_IMF, and ALMAGAL, to deepen our understandings of ‘dense gas’ star formation scaling relations and massive protocluster formation. 
    more » « less
  5. Abstract We have obtained sensitive dust continuum polarization observations at 850 μ m in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope as part of the B -fields in STar-forming Region Observations (BISTRO) survey. These observations allow us to probe magnetic field ( B -field) at high spatial resolution (∼2000 au or ∼0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis–Chandrasekhar–Fermi method, we estimate the B -field strengths in K04166, K04169, and Miz-8b to be 38 ± 14, 44 ± 16, and 12 ± 5 μ G, respectively. These cores show distinct mean B -field orientations. The B -field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B -field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. The B -field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B -field and not well correlated with other axes. In contrast, Miz-8b exhibits a disordered B -field that shows no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B -field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B -field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux. 
    more » « less