skip to main content


Search for: All records

Creators/Authors contains: "Liu, Kai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. The first-order reversal curve (FORC) method is a macroscopic measurement technique that can be used to extract quantitative and microscopic properties of hysteretic systems. Using magnetic transmission x-ray microscopy (MTXM), local element-specific FORC measurements are performed on a 20 nm thick film of CoTb. The FORCs measured with microscopy reveal a step-by-step domain evolution under the magnetic field cycling protocol and provide a direct visualization of the mechanistic interpretation of FORC diagrams. They are compared with magnetometry FORCs and show good quantitative agreement. Furthermore, the high spatial resolution and element-specific sensitivity of MTXM provide new capabilities to measure FORCs in small regions or specific phases within multicomponent systems, including buried layers in heterostructures. The ability to perform FORCs on very small features is demonstrated with the MTXM-FORC measurement of a rectangular microstructure with vortex-like Landau structures. This work demonstrates the confluence of two uniquely powerful techniques to achieve quantitative insight into nanoscale magnetic behavior. 
    more » « less
  4. Magneto-ionics has emerged as a promising approach to manipulate magnetic properties, not only by drastically reducing power consumption associated with electric current based devices but also by enabling novel functionalities. To date, magneto-ionics have been mostly explored in oxygen-based systems, while there is a surge of interest in alternative ionic systems. Here we demonstrate highly effective hydroxide-based magneto-ionics in electrodeposited α-Co(OH) 2 films. The α-Co(OH) 2 , which is a room temperature paramagnet, is switched to ferromagnetic after electrolyte gating with a negative voltage. The system is fully, magnetically reversible upon positive voltage application. The origin of the reversible paramagnetic-to-ferromagnetic transition is attributed to the ionic diffusion of hydroxyl groups, promoting the formation of metallic cobalt ferromagnetic regions. Our findings demonstrate one of the lowest turn-on voltages reported for propylene carbonate gated experiments. By tuning the voltage magnitude and sample area we demonstrate that the speed of the induced ionic effect can be drastically enhanced. 
    more » « less
  5. Oceanic eddies accompanied by a significant vertical velocity ( w ) are known to be of great importance for the vertical transport of various climatically, biologically or biogeochemically relevant properties. Using quasi-geostrophic w -thinking to extend the classic “ β -spiral” w -theory for gyre circulations to isolated and nearly symmetric oceanic mesoscale eddies, we propose that their w motion will be dominated by a strong east-west dipole pattern with deep ocean penetrations. Contrasting numerical simulations of idealized isolated eddies together with w -equation diagnostics confirm that the w -dipole is indeed dominated by the “eddy β -spiral” mechanism in the β -plane simulation, whereas this w -dipole expectedly disappears in the f -plane simulation. Analyses of relatively isolated warm and cold eddy examples show good agreement with the proposed mechanism. Our studies further clarify eddy vertical motions, have implications for ocean mixing and vertical transport, and inspire further studies. 
    more » « less
  6. We report the first experimental demonstration of a vertical superjunction device in GaN. P-type nickel oxide (NiO) is sputtered conformally in 6μm deep n-GaN trenches. Sputter recipe is tuned to enable 1017 cm −3 level acceptor concentration in NiO, easing its charge balance with the 9×1016 cm −3 doped n-GaN. Vertical GaN superjunction p-n diodes (SJ-PNDs) are fabricated on both native GaN and low-cost sapphire substrates. GaN SJ-PNDs on GaN and sapphire both show a breakdown voltage (BV) of 1100 V, being at least 900 V higher than their 1-D PND counterparts. The differential specific on-resistance (RON,SP) of the two SJ-PNDs are both 0.3mΩ⋅ cm 2 , with the drift region resistance (RDR,SP) extracted to be 0.15mΩ⋅ cm 2 . The RON,SP∼BV trade-off is among the best in GaN-on-GaN diodes and sets a new record for vertical GaN devices on foreign substrates. The RDR,SP∼BV trade-off exceeds the 1-D GaN limit, fulfilling the superjunction functionality in GaN. 
    more » « less
  7. Abstract Porous MXene-polymer composites have gained attention due to their low density, large surface area, and high electrical conductivity, which can be used in applications such as electromagnetic interference shielding, sensing, energy storage, and catalysis. High internal phase emulsions (HIPEs) can be used to template the synthesis of porous polymer structures, and when solid particles are used as the interfacial agent, composites with pores lined with the particles can be realized. Here, we report a simple and scalable method to prepare conductive porous MXene/polyacrylamide structures via polymerization of the continuous phase in oil/water HIPEs. The HIPEs are stabilized by salt flocculated Ti 3 C 2 T x nanosheets, without the use of a co-surfactant. After polymerization, the polyHIPE structure consists of porous polymer struts and pores lined with Ti 3 C 2 T x nanosheets, as confirmed by scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The pore size can be tuned by varying the Ti 3 C 2 T x concentration, and the interconnected Ti 3 C 2 T x network allows for electrical percolation at low Ti 3 C 2 T x loading; further, the electrical conductivity is stable for months indicating that in these composites, the nanosheets are stable to oxidation at ambient conditions. The polyHIPEs also exhibit rapid radio frequency heating at low power (10 °C s −1 at 1 W). This work demonstrates a simple approach to accessing electrically conductive porous MXene/polymer composites with tunable pore morphology and good oxidation stability of the nanosheets. 
    more » « less