skip to main content


Search for: All records

Creators/Authors contains: "Livingston, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A new type of radio frequency (RF) timing technique is presented. It is based on a helical deflector, which performs circular or elliptical sweeps of photo- or secondary electrons, accelerated to keV energies, by means of RF fields in the 500–1000 MHz range. By converting a time distribution of the electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing, similar to streak cameras. Detection of the scanned electrons, using a position sensitive detector based on microchannel plates and a delay line anode, resulted in a timing resolution of 10 ps, which can be potentially improved to 1 ps. RF-Timer-based single photon and heavy ion detectors have potential applications in different fields of science and industry, which include high energy nuclear physics and imaging technologies. This technique could play a crucial role in developing of sub 10 ps Time-of-Flight Positron Emission Tomography.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Free, publicly-accessible full text available August 1, 2024
  3. The double-spin-polarization observable E for γ p → pπ0 has been measured with the CEBAF Large Acceptance Spectrometer (CLAS) at photon beam energies Eγ from 0.367 to 2.173 GeV (corresponding to center-ofmass energies from 1.240 to 2.200 GeV) for pion center-ofmass angles, cos θc.m. π0 , between − 0.86 and 0.82. These new CLAS measurements cover a broader energy range and have smaller uncertainties compared to previous CBELSA data and provide an important independent check on systematics. These measurements are compared to predictions as well as new global fits from The George Washington University, Mainz, and Bonn-Gatchina groups. Their inclusion in multipole analyses will allow us to refine our understanding of the single-pion production contribution to the Gerasimov-Drell- Hearn sum rule and improve the determination of resonance properties, which will be presented in a future publication. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  4. Free, publicly-accessible full text available June 1, 2024
  5. Free, publicly-accessible full text available May 1, 2024