skip to main content


Search for: All records

Creators/Authors contains: "Lloyd-Smith, James O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Elkins, Christopher A. (Ed.)

    Seasonal epidemics and sporadic pandemics of influenza cause a large public health burden. Although influenza viruses disseminate through the environment in respiratory secretions expelled from infected individuals, they can also be transmitted by contaminated surfaces where virus-laden expulsions can be deposited.

     
    more » « less
    Free, publicly-accessible full text available July 26, 2024
  3. Abstract

    Studies of infectious disease ecology would benefit greatly from knowing when individuals were infected, but estimating this time of infection can be challenging, especially in wildlife. Time of infection can be estimated from various types of data, with antibody‐level data being one of the most promising sources of information. The use of antibody levels to back‐calculate infection time requires the development of a host‐pathogen system‐specific model of antibody dynamics, and a leading challenge in such quantitative serology approaches is how to model antibody dynamics in the absence of experimental infection data.

    We present a way to model antibody dynamics in a Bayesian framework that facilitates the incorporation of all available information about potential infection times and apply the model to estimate infection times of Channel Island foxes infected withLeptospira interrogans.

    Using simulated data, we show that the approach works well across a broad range of parameter settings and can lead to major improvements in infection time estimates that depend on system characteristics such as antibody decay rate and variation in peak antibody levels after exposure. When applied to field data we saw reductions up to 83% in the window of possible infection times.

    The method substantially simplifies the challenge of modelling antibody dynamics in the absence of individuals with known infection times, opens up new opportunities in wildlife disease ecology and can even be applied to cross‐sectional data once the model is trained.

     
    more » « less
  4. null (Ed.)
    Ambient temperature and humidity strongly affect inactivation rates of enveloped viruses, but a mechanistic, quantitative theory of these effects has been elusive. We measure the stability of SARS-CoV-2 on an inert surface at nine temperature and humidity conditions and develop a mechanistic model to explain and predict how temperature and humidity alter virus inactivation. We find SARS-CoV-2 survives longest at low temperatures and extreme relative humidities (RH); median estimated virus half-life is >24 hours at 10C and 40% RH, but ~1.5 hours at 27C and 65% RH. Our mechanistic model uses fundamental chemistry to explain why inactivation rate increases with increased temperature and shows a U-shaped dependence on RH. The model accurately predicts existing measurements of five different human coronaviruses, suggesting that shared mechanisms may affect stability for many viruses. The results indicate scenarios of high transmission risk, point to mitigation strategies, and advance the mechanistic study of virus transmission. 
    more » « less
  5. During outbreaks of high-consequence pathogens, airport screening programs have been deployed to curtail geographic spread of infection. The effectiveness of screening depends on several factors, including pathogen natural history and epidemiology, human behavior, and characteristics of the source epidemic. We developed a mathematical model to understand how these factors combine to influence screening outcomes. We analyzed screening programs for six emerging pathogens in the early and late stages of an epidemic. We show that the effectiveness of different screening tools depends strongly on pathogen natural history and epidemiological features, as well as human factors in implementation and compliance. For pathogens with longer incubation periods, exposure risk detection dominates in growing epidemics, while fever becomes a better target in stable or declining epidemics. For pathogens with short incubation, fever screening drives detection in any epidemic stage. However, even in the most optimistic scenario arrival screening will miss the majority of cases.

     
    more » « less
  6. The controversy surrounding 'gain-of-function' experiments on high-consequence avian influenza viruses has highlighted the role of ferret transmission experiments in studying the transmission potential of novel influenza strains. However, the mapping between influenza transmission in ferrets and in humans is unsubstantiated. We address this gap by compiling and analyzing 240 estimates of influenza transmission in ferrets and humans. We demonstrate that estimates of ferret secondary attack rate (SAR) explain 66% of the variation in human SAR estimates at the subtype level. Further analysis shows that ferret transmission experiments have potential to identify influenza viruses of concern for epidemic spread in humans, though small sample sizes and biological uncertainties prevent definitive classification of human transmissibility. Thus, ferret transmission experiments provide valid predictions of pandemic potential of novel influenza strains, though results should continue to be corroborated by targeted virological and epidemiological research.

     
    more » « less