skip to main content


Search for: All records

Creators/Authors contains: "Loboa, Elizabeth G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The College of Engineering at the University of Missouri, Columbia (MU Engineering) develops engineering leaders who positively influence society and bring innovation to the global workforce. Recruiting top students from around the world to fuel an atmosphere of excellence and cutting-edge growth, MU Engineering prepares out-of-the-box thinkers, innovators, and entrepreneurs who stand ready to lead today and adapt to tomorrow. To engage all of our students with industry in an inclusive space, the MU Engineering Office of Diversity and Outreach Initiatives established the Diverse Engineering Professionals Conference in 2017 in partnership with a student committee. The committee included representatives from various organizations, including the National Society of Black Engineers, Society of Hispanic Professional Engineers, Engineering Student Council, Society of Women Engineers, and Out in STEM. Industrial sponsorships were secured with assistance from the MU Engineering Leadership, Engagement and Career Development Academy. The daylong conference recognizes diversity organizations and diverse students and their achievements while promoting our core college values of integrity, excellence, and collaboration. The conference includes professional development and diversity education workshops, research presentations, keynote speakers, and a closing ceremony. In its first year, the conference featured nine companies and attracted about 75 attendees. In year two, the conference nearly doubled its impact with 12 companies and 150 attendees, including students from all majors, years, and demographics. The conference was well received across both years and continues to grow as an annual effort in the college. Feedback from company representatives and students re-emphasized the need for an intimate company-student environment like that found at the Diverse Engineering Professionals Conference. 
    more » « less
  2. Abstract

    Non-motile primary cilia are dynamic cellular sensory structures and are expressed in adipose-derived stem cells (ASCs). We have previously shown that primary cilia are involved in chemically-induced osteogenic differentiation of human ASC (hASCs)in vitro. Further, we have reported that 10% cyclic tensile strain (1 Hz, 4 hours/day) enhances hASC osteogenesis. We hypothesize that primary cilia respond to cyclic tensile strain in a lineage dependent manner and that their mechanosensitivity may regulate the dynamics of signaling pathways localized to the cilium. We found that hASC morphology, cilia length and cilia conformation varied in response to culture in complete growth, osteogenic differentiation, or adipogenic differentiation medium, with the longest cilia expressed in adipogenically differentiating cells. Further, we show that cyclic tensile strain both enhances osteogenic differentiation of hASCs while it suppresses adipogenic differentiation as evidenced by upregulation ofRUNX2gene expression and downregulation ofPPARGandIGF-1, respectively. This study demonstrates that hASC primary cilia exhibit mechanosensitivity to cyclic tensile strain and lineage-dependent expression, which may in part regulate signaling pathways localized to the primary cilium during the differentiation process. We highlight the importance of the primary cilium structure in mechanosensing and lineage specification and surmise that this structure may be a novel target in manipulating hASC for in tissue engineering applications.

     
    more » « less
  3. Advances in mechanobiology have evolved through insights from multiple disciplines including structural engineering, biomechanics, vascular biology, and orthopaedics. In this paper, we reviewed the impact of key reports related to the study of applied loads on tissues and cells and the resulting signal transduction pathways. We addressed how technology has helped advance the burgeoning field of mechanobiology (over 33,600 publications from 1970 to 2016). We analyzed the impact of critical ideas and then determined how these concepts influenced the mechanobiology field by looking at the citation frequency of these reports as well as tracking how the overall number of citations within the field changed over time. These data allowed us to understand how a key publication, idea, or technology guided or enabled the field. Initial observations of how forces acted on bone and soft tissues stimulated the development of computational solutions defining how forces affect tissue modeling and remodeling. Enabling technologies, such as cell and tissue stretching, compression, and shear stress devices, allowed more researchers to explore how deformation and fluid flow affect cells. Observation of the cell as a tensegrity structure and advanced methods to study genetic regulation in cells further advanced knowledge of specific mechanisms of mechanotransduction. The future of the field will involve developing gene and drug therapies to simulate or augment beneficial load regimens in patients and in mechanically conditioning organs for implantation. Here, we addressed a history of the field, but we limited our discussions to advances in musculoskeletal mechanobiology, primarily in bone, tendon, and ligament tissues. 
    more » « less
  4. Abstract

    In this study, we report an industrial‐scale fabrication method of a multifunctional polymer composite as a scaffold material for bone tissue engineering. This study successfully demonstrated the potential of applying industrial polymer processing technologies to produce specially functionalized tissue engineering scaffolds. With the inclusion of a newly synthesized multifunctional additive, silver‐doped‐calcium phosphate (silver‐CaP), the composite material exhibited excellent osteogenic inducibility of human adipose‐derived stem cells (hASC) and satisfactory antibacterial efficacy againstEscherichia coliandStaphylococcus aureus. Also, relative to previously reported methods of direct loading silver particles into polymeric materials, our composite exhibited significantly reduced silver associated cytotoxicity. The enhanced biocompatibility could be a significant advantage for materials to be used for regenerative medicine applications where clinical safety is a major consideration. The impact of different silver loading methodologies on hASC’ osteogenic differentiation was also studied. Overall, the results of this study indicate a promising alternative approach to produce multifunctional scaffolds at industrial‐scale with higher throughput, lower cost, and enhanced reproducibility. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 900–910, 2019.

     
    more » « less
  5. Abstract

    There is a need for the development of effective treatments for focal articular cartilage injuries. We previously developed a multiphasic 3D‐bioplotted osteochondral scaffold design that can drive site‐specific tissue formation when seeded with adipose‐derived stem cells (ASC). The objective of this study was to evaluate this scaffold in a large animal model. Osteochondral defects were generated in the trochlear groove of Yucatan minipigs and repaired with scaffolds that either contained or lacked an electrospun tidemark and were either unseeded or seeded with ASC. Implants were monitored via computed tomography (CT) over the course of 4 months of in vivo implantation and compared to both open lesions and autologous explants. ICRS II evaluation indicated that defects with ASC‐seeded scaffolds had healing that most closely resembled the aulogous explant. Scaffold‐facilitated subchondral bone repair mimicked the structure of native bone tissue, but cartilage matrix staining was not apparent within the scaffold. The open lesions had the highest volumetric infill detected using CT analysis (p < 0.05), but the repair tissue was largely disorganized. The acellular scaffold without a tidemark had significantly more volumetric filling than either the acellular or ASC seeded groups containing a tidemark (p < 0.05), suggesting that the tidemark limited cell infiltration into the cartilage portion of the scaffold. Overall, scaffold groups repaired the defect more successfully than an open lesion but achieved limited repair in the cartilage region. With further optimization, this approach holds potential to treat focal cartilage lesions in a highly personalized manner using a human patient's own ASC cells.

     
    more » « less
  6. Abstract

    Osteoarthritis is a degenerative joint disease that limits mobility of the affected joint due to the degradation of articular cartilage and subchondral bone. The limited regenerative capacity of cartilage presents significant challenges when attempting to repair or reverse the effects of cartilage degradation. Tissue engineered medical products are a promising alternative to treat osteochondral degeneration due to their potential to integrate into the patient's existing tissue. The goal of this study was to create a scaffold that would induce site‐specific osteogenic and chondrogenic differentiation of human adipose‐derived stem cells (hASC) to generate a full osteochondral implant. Scaffolds were fabricated using 3D‐bioplotting of biodegradable polycraprolactone (PCL) with either β‐tricalcium phosphate (TCP) or decellularized bovine cartilage extracellular matrix (dECM) to drive site‐specific hASC osteogenesis and chondrogenesis, respectively. PCL‐dECM scaffolds demonstrated elevated matrix deposition and organization in scaffolds seeded with hASC as well as a reduction in collagen I gene expression. 3D‐bioplotted PCL scaffolds with 20% TCP demonstrated elevated calcium deposition, endogenous alkaline phosphatase activity, and osteopontin gene expression. Osteochondral scaffolds comprised of hASC‐seeded 3D‐bioplotted PCL‐TCP, electrospun PCL, and 3D‐bioplotted PCL‐dECM phases were evaluated and demonstrated site‐specific osteochondral tissue characteristics. This technique holds great promise as cartilage morbidity is minimized since autologous cartilage harvest is not required, tissue rejection is minimized via use of an abundant and accessible source of autologous stem cells, and biofabrication techniques allow for a precise, customizable methodology to rapidly produce the scaffold.

     
    more » « less