skip to main content


Search for: All records

Creators/Authors contains: "Longmore, Steven N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this work, we constrain the star-forming properties of all possible sites of incipient high-mass star formation in the Milky Way’s Galactic Center. We identify dense structures using the CMZoom 1.3 mm dust continuum catalog of objects with typical radii of ∼0.1 pc, and measure their association with tracers of high-mass star formation. We incorporate compact emission at 8, 21, 24, 25, and 70μm from the Midcourse Space Experiment, Spitzer, Herschel, and SOFIA, cataloged young stellar objects, and water and methanol masers to characterize each source. We find an incipient star formation rate (SFR) for the Central Molecular Zone (CMZ) of ∼0.08Myr−1over the next few 105yr. We calculate upper and lower limits on the CMZ’s incipient SFR of ∼0.45 and ∼0.05Myr−1,respectively, spanning roughly equal to and several times greater than other estimates of CMZ’s recent SFR. Despite substantial uncertainties, our results suggest the incipient SFR in the CMZ may be higher than previously estimated. We find that the prevalence of star formation tracers does not correlate with source volume density, but instead ≳75% of high-mass star formation is found in regions above a column density ratio (NSMA/NHerschel) of ∼1.5. Finally, we highlight the detection ofatoll sources, a reoccurring morphology of cold dust encircling evolved infrared sources, possibly representing Hiiregions in the process of destroying their envelopes.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. ABSTRACT

    The Central Molecular Zone (the central ∼500 pc of the Milky Way) hosts molecular clouds in an extreme environment of strong shear, high gas pressure and density, and complex chemistry. G0.253+0.016, also known as ‘the Brick’, is the densest, most compact, and quiescent of these clouds. High-resolution observations with the Atacama Large Millimetre/submillimetre Array (ALMA) have revealed its complex, hierarchical structure. In this paper we compare the properties of recent hydrodynamical simulations of the Brick to those of the ALMA observations. To facilitate the comparison, we post-process the simulations and create synthetic ALMA maps of molecular line emission from eight molecules. We correlate the line emission maps to each other and to the mass column density and find that HNCO is the best mass tracer of the eight emission lines within the simulations. Additionally, we characterize the spatial structure of the observed and simulated cloud using the density probability distribution function (PDF), spatial power spectrum, fractal dimension, and moments of inertia. While we find good agreement between the observed and simulated data in terms of power spectra and fractal dimensions, there are key differences in the density PDFs and moments of inertia, which we attribute to the omission of magnetic fields in the simulations. This demonstrates that the presence of the Galactic potential can reproduce many cloud properties, but additional physical processes are needed to fully explain the gas structure.

     
    more » « less
  3. ABSTRACT

    The Central Molecular Zone (CMZ; the central ∼500 pc of the Galaxy) is a kinematically unusual environment relative to the Galactic disc, with high-velocity dispersions and a steep size–linewidth relation of the molecular clouds. In addition, the CMZ region has a significantly lower star formation rate (SFR) than expected by its large amount of dense gas. An important factor in explaining the low SFR is the turbulent state of the star-forming gas, which seems to be dominated by rotational modes. However, the turbulence driving mechanism remains unclear. In this work, we investigate how the Galactic gravitational potential affects the turbulence in CMZ clouds. We focus on the CMZ cloud G0.253+0.016 (‘the Brick’), which is very quiescent and unlikely to be kinematically dominated by stellar feedback. We demonstrate that several kinematic properties of the Brick arise naturally in a cloud-scale hydrodynamics simulation, that takes into account the Galactic gravitational potential. These properties include the line-of-sight velocity distribution, the steepened size–linewidth relation, and the predominantly solenoidal nature of the turbulence. Within the simulation, these properties result from the Galactic shear in combination with the cloud’s gravitational collapse. This is a strong indication that the Galactic gravitational potential plays a crucial role in shaping the CMZ gas kinematics, and is a major contributor to suppressing the SFR, by inducing predominantly solenoidal turbulent modes.

     
    more » « less
  4. ABSTRACT

    We present an overview and data release of the spectral line component of the SMA Large Program, CMZoom. CMZoom observed 12CO (2–1), 13CO (2–1), and C18O (2–1), three transitions of H2CO, several transitions of CH3OH, two transitions of OCS, and single transitions of SiO and SO within gas above a column density of N(H2) ≥ 1023 cm−2 in the Central Molecular Zone (CMZ; inner few hundred pc of the Galaxy). We extract spectra from all compact 1.3 mm CMZoom continuum sources and fit line profiles to the spectra. We use the fit results from the H2CO 3(0, 3)–2(0, 2) transition to determine the source kinematic properties. We find ∼90 per cent of the total mass of CMZoom sources have reliable kinematics. Only four compact continuum sources are formally self-gravitating. The remainder are consistent with being in hydrostatic equilibrium assuming that they are confined by the high external pressure in the CMZ. We find only two convincing proto-stellar outflows, ruling out a previously undetected population of very massive, actively accreting YSOs with strong outflows. Finally, despite having sufficient sensitivity and resolution to detect high-velocity compact clouds (HVCCs), which have been claimed as evidence for intermediate mass black holes interacting with molecular gas clouds, we find no such objects across the large survey area.

     
    more » « less
  5. ABSTRACT

    Young massive clusters (YMCs) are compact (≲1 pc), high-mass (>104 M⊙) stellar systems of significant scientific interest. Due to their rarity and rapid formation, we have very few examples of YMC progenitor gas clouds before star formation has begun. As a result, the initial conditions required for YMC formation are uncertain. We present high resolution (0.13 arcsec, ∼1000 au) ALMA observations and Mopra single-dish data, showing that Galactic Centre dust ridge ‘Cloud d’ (G0.412 + 0.052, mass = 7.6 × 104 M⊙, radius = 3.2 pc) has the potential to become an Arches-like YMC (104 M⊙, r ∼ 1 pc), but is not yet forming stars. This would mean it is the youngest known pre-star-forming massive cluster and therefore could be an ideal laboratory for studying the initial conditions of YMC formation. We find 96 sources in the dust continuum, with masses ≲3 M⊙ and radii of ∼103 au. The source masses and separations are more consistent with thermal rather than turbulent fragmentation. It is not possible to unambiguously determine the dynamical state of most of the sources, as the uncertainty on virial parameter estimates is large. We find evidence for large-scale (∼1 pc) converging gas flows, which could cause the cloud to grow rapidly, gaining 104 M⊙ within 105 yr. The highest density gas is found at the convergent point of the large-scale flows. We expect this cloud to form many high-mass stars, but find no high-mass starless cores. If the sources represent the initial conditions for star formation, the resulting initial mass function will be bottom heavy.

     
    more » « less
  6. ABSTRACT In the centres of the Milky Way and M83, the global environmental properties thought to control star formation are very similar. However, M83’s nuclear star formation rate (SFR), as estimated by synchrotron and H α emission, is an order of magnitude higher than the Milky Way’s. To understand the origin of this difference we use ALMA observations of HCN (1 − 0) and HCO+ (1 − 0) to trace the dense gas at the size scale of individual molecular clouds (0.54 arcsec, 12 pc) in the inner ∼500 pc of M83, and compare this to gas clouds at similar resolution and galactocentric radius in the Milky Way. We find that both the overall gas distribution and the properties of individual clouds are very similar in the two galaxies, and that a common mechanism may be responsible for instigating star formation in both circumnuclear rings. Given the considerable similarity in gas properties, the most likely explanation for the order of magnitude difference in SFR is time variability, with the Central Molecular Zone (CMZ) currently being at a more quiescent phase of its star formation cycle. We show M83’s SFR must have been an order of magnitude higher 5–7 Myr ago. M83’s ‘starburst’ phase was highly localized, both spatially and temporally, greatly increasing the feedback efficiency and ability to drive galactic-scale outflows. This highly dynamic nature of star formation and feedback cycles in galaxy centres means (i) modelling and interpreting observations must avoid averaging over large spatial areas or time-scales, and (ii) understanding the multiscale processes controlling these cycles requires comparing snapshots of a statistical sample of galaxies in different evolutionary stages. 
    more » « less
  7. null (Ed.)
  8. ABSTRACT

    G0.253+0.016, commonly referred to as ‘the Brick’ and located within the Central Molecular Zone, is one of the densest (≈103–4 cm−3) molecular clouds in the Galaxy to lack signatures of widespread star formation. We set out to constrain the origins of an arc-shaped molecular line emission feature located within the cloud. We determine that the arc, centred on $\lbrace l_{0},b_{0}\rbrace =\lbrace 0{_{.}^{\circ}} 248,\, 0{_{.}^{\circ}} 018\rbrace$, has a radius of 1.3 pc and kinematics indicative of the presence of a shell expanding at $5.2^{+2.7}_{-1.9}$ $\mathrm{\, km\, s}^{-1}$. Extended radio continuum emission fills the arc cavity and recombination line emission peaks at a similar velocity to the arc, implying that the molecular gas and ionized gas are physically related. The inferred Lyman continuum photon rate is NLyC = 1046.0–1047.9 photons s−1, consistent with a star of spectral type B1-O8.5, corresponding to a mass of ≈12–20 M⊙. We explore two scenarios for the origin of the arc: (i) a partial shell swept up by the wind of an interloper high-mass star and (ii) a partial shell swept up by stellar feedback resulting from in situ star formation. We favour the latter scenario, finding reasonable (factor of a few) agreement between its morphology, dynamics, and energetics and those predicted for an expanding bubble driven by the wind from a high-mass star. The immediate implication is that G0.253+0.016 may not be as quiescent as is commonly accepted. We speculate that the cloud may have produced a ≲103 M⊙ star cluster ≳0.4 Myr ago, and demonstrate that the high-extinction and stellar crowding observed towards G0.253+0.016 may help to obscure such a star cluster from detection.

     
    more » « less
  9. Abstract

    The earliest stages of star formation, when young stars are still deeply embedded in their natal clouds, represent a critical phase in the matter cycle between gas clouds and young stellar regions. Until now, the high-resolution infrared observations required for characterizing this heavily obscured phase (during which massive stars have formed, but optical emission is not detected) could only be obtained for a handful of the most nearby galaxies. One of the main hurdles has been the limited angular resolution of the Spitzer Space Telescope. With the revolutionary capabilities of the James Webb Space Telescope (JWST), it is now possible to investigate the matter cycle during the earliest phases of star formation as a function of the galactic environment. In this Letter, we demonstrate this by measuring the duration of the embedded phase of star formation and the implied time over which molecular clouds remain inert in the galaxy NGC 628 at a distance of 9.8 Mpc, demonstrating that the cosmic volume where this measurement can be made has increased by a factor of >100 compared to Spitzer. We show that young massive stars remain embedded for5.11.4+2.7Myr (2.31.4+2.7Myr of which being heavily obscured), representing ∼20% of the total cloud lifetime. These values are in broad agreement with previous measurements in five nearby (D< 3.5 Mpc) galaxies and constitute a proof of concept for the systematic characterization of the early phase of star formation across the nearby galaxy population with the PHANGS–JWST survey.

     
    more » « less