skip to main content


Search for: All records

Creators/Authors contains: "Looney, Leslie W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a statistical characterization of circumstellar disk orientations toward 12 protostellar multiple systems in the Perseus molecular cloud using the Atacama Large Millimeter/submillimeter Array at Band 6 (1.3 mm) with a resolution of ∼25 mas (∼8 au). This exquisite resolution enabled us to resolve the compact inner-disk structures surrounding the components of each multiple system and to determine the projected 3D orientation of the disks (position angle and inclination) to high precision. We performed a statistical analysis on the relative alignment of disk pairs to determine whether the disks are preferentially aligned or randomly distributed. We considered three subsamples of the observations selected by the companion separationsa< 100 au,a> 500 au, anda< 10,000 au. We found for the compact (<100 au) subsample, the distribution of orientation angles is best described by an underlying distribution of preferentially aligned sources (within 30°) but does not rule out distributions with 40% misaligned sources. The wide companion (>500 au) subsample appears to be consistent with a distribution of 40%–80% preferentially aligned sources. Similarly, the full sample of systems with companions (a< 10,000 au) is most consistent with a fractional ratio of at most 80% preferentially aligned sources and rules out purely randomly aligned distributions. Thus, our results imply the compact sources (<100 au) and the wide companions (>500 au) are statistically different.

     
    more » « less
  2. ABSTRACT

    The internal velocity structure within dense gaseous cores plays a crucial role in providing the initial conditions for star formation in molecular clouds. However, the kinematic properties of dense gas at core scales (∼0.01−0.1 pc) has not been extensively characterized because of instrument limitations until the unique capabilities of GBT-Argus became available. The ongoing GBT-Argus Large Program, Dynamics in Star-forming Cores (DiSCo) thus aims to investigate the origin and distribution of angular momentum of star-forming cores. DiSCo will survey all starless cores and Class 0 protostellar cores in the Perseus molecular complex down to ∼0.01 pc scales with <0.05 km s−1 velocity resolution using the dense gas tracer N2H+. Here, we present the first data sets from DiSCo towards the B1 and NGC 1333 regions in Perseus. Our results suggest that a dense core’s internal velocity structure has little correlation with other core-scale properties, indicating these gas motions may be originated externally from cloud-scale turbulence. These first data sets also reaffirm the ability of GBT-Argus for studying dense core velocity structure and provided an empirical basis for future studies that address the angular momentum problem with a statistically broad sample.

     
    more » « less
  3. Abstract Crescent-shaped structures in transition disks hold the key to studying the putative companions to the central stars. The dust dynamics, especially that of different grain sizes, is important to understanding the role of pressure bumps in planet formation. In this work, we present deep dust continuum observation with high resolution toward the Oph IRS 48 system. For the first time, we are able to significantly trace and detect emission along 95% of the ring crossing the crescent-shaped structure. The ring is highly eccentric with an eccentricity of 0.27. The flux density contrast between the peak of the flux and its counterpart along the ring is ∼270. In addition, we detect a compact emission toward the central star. If the emission is an inner circumstellar disk inside the cavity, it has a radius of at most a couple of astronomical units with a dust mass of 1.5 × 10 −8 M ⊙ , or 0.005 M ⊕ . We also discuss the implications of the potential eccentric orbit on the proper motion of the crescent, the putative secondary companion, and the asymmetry in velocity maps. 
    more » « less
    Free, publicly-accessible full text available April 26, 2024
  4. Abstract VLA 1623 West is an ambiguous source that has been described as a shocked cloudlet as well as a protostellar disk. We use deep ALMA 1.3 and 0.87 mm observations to constrain its shape and structure to determine its origins better. We use a series of geometric models to fit the uv visibilities at both wavelengths with GALARIO . Although the real visibilities show structures similar to what has been identified as gaps and rings in protoplanetary disks, we find that a modified flat-topped Gaussian model at high inclination provides the best fit to the observations. This fit agrees well with expectations for an optically thick, highly inclined disk. Nevertheless, we find that the geometric models consistently yield positive residuals at the four corners of the disk at both wavelengths. We interpret these residuals as evidence that the disk is flared in the millimeter dust. We use a simple toy model for an edge-on flared disk and find that the residuals best match a disk with flaring that is mainly restricted to the outer disk at R ≳ 30 au. Thus, VLA 1623W may represent a young protostellar disk where the large dust grains have not yet had enough time to settle into the midplane. This result may have implications for how disk evolution and vertical dust settling impact the initial conditions leading to planet formation. 
    more » « less
  5. Abstract We present Markov Chain Monte Carlo radiative transfer modeling of a joint ALMA 345 GHz and spectral energy distribution data set for a sample of 97 protostellar disks from the VLA and ALMA Nascent Disk and Multiplicity Survey of Orion Protostars. From this modeling, we derive disk and envelope properties for each protostar, allowing us to examine the bulk properties of a population of young protostars. We find that disks are small, with a median dust radius of 29.4 − 2.7 + 4.1 au and a median dust mass of 5.8 − 2.7 + 4.6 M ⊕ . We find no statistically significant difference between most properties of Class 0, Class I, and flat-spectrum sources with the exception of envelope dust mass and inclination. The distinction between inclination is an indication that the Class 0/I/flat-spectrum system may be difficult to tie uniquely to the evolutionary state of protostars. When comparing with Class II disk dust masses in Taurus from similar radiative transfer modeling, we further find that the trend of disk dust mass decreasing from Class 0 to Class II disks is no longer present, though it remains unclear whether such a comparison is fair owing to differences in star-forming region and modeling techniques. Moreover, the disks we model are broadly gravitationally stable. Finally, we compare disk masses and radii with simulations of disk formation and find that magnetohydrodynamical effects may be important for reproducing the observed properties of disks. 
    more » « less
  6. Abstract In this work, we present 299 candidate young stellar objects (YSOs) in 30 Doradus discovered using Spitzer and Herschel point-source catalogs, 276 of which are new. We study the parental giant molecular clouds in which these YSO candidates form using recently published Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 7 observations of 12 CO and 13 CO. The threshold for star formation in 30 Doradus inferred by the LTE-based mass surface density is 178 M ⊙ pc −2 , 40% higher than the threshold for star formation in the Milky Way. This increase in star formation threshold in comparison to the Milky Way and increase in line width seen in clumps 11 pc away in comparison to clumps 45 pc away from the R136 super star cluster could be due to injected turbulent energy, increase in interstellar medium pressure, and/or local magnetic field strength. Of the 299 YSO candidates in this work, 62% are not associated with 12 CO molecular gas. This large fraction can be explained by the fact that 75%–97% of the H 2 gas is not traced by CO. We fit a Kroupa initial mass function to the YSO candidates and find that the total integrated stellar mass is 18,000 M ⊙ and that the region has a star formation rate (SFR) of 0.18 M ⊙ yr −1 . The initial mass function determined here applies to the four 150″ × 150″ (37.5 pc × 37.5 pc) subfields and one 150″ × 75″ (37.5 pc × 18.8 pc) subfield observed with ALMA. The SFR in 30 Doradus has increased in the past few million years. 
    more » « less
  7. Abstract

    We present Very Large Array observations toward the Class 0 protostar L1157 MMS at 6.8 and 9 mm with a resolution of ∼0.″04 (14 au). We detect two sources within L1157 MMS and interpret these sources as a binary protostar with a separation of ∼16 au. The material directly surrounding the binary system within the inner 50 au radius of the system has an estimated mass of 0.11M, calculated from the observed dust emission. We interpret the observed binary system in the context of previous observations of its flattened envelope structure, low rates of envelope rotation from 5000 to 200 au scales, and an ordered, poloidal magnetic field aligned with the outflow. Thus, L1157 MMS is a prototype system for magnetically regulated collapse, and the presence of a compact binary within L1157 MMS demonstrates that multiple star formation can still occur within envelopes that likely have dynamically important magnetic fields.

     
    more » « less
  8. Abstract Constraining the physical and chemical structure of young embedded disks is crucial for understanding the earliest stages of planet formation. As part of the Early Planet Formation in Embedded Disks Atacama Large Millimeter/submillimeter Array Large Program, we present high spatial resolution (∼0.″1 or ∼15 au) observations of the 1.3 mm continuum and 13 CO J = 2–1, C 18 O J = 2–1, and SO J N = 6 5 –5 4 molecular lines toward the disk around the Class I protostar L1489 IRS. The continuum emission shows a ring-like structure at 56 au from the central protostar and tenuous, optically thin emission extending beyond ∼300 au. The 13 CO emission traces the warm disk surface, while the C 18 O emission originates from near the disk midplane. The coincidence of the radial emission peak of C 18 O with the dust ring may indicate a gap-ring structure in the gaseous disk as well. The SO emission shows a highly complex distribution, including a compact, prominent component at ≲30 au, which is likely to originate from thermally sublimated SO molecules. The compact SO emission also shows a velocity gradient along a direction tilted slightly (∼15°) with respect to the major axis of the dust disk, which we interpret as an inner warped disk in addition to the warp around ∼200 au suggested by previous work. These warped structures may be formed by a planet or companion with an inclined orbit, or by a gradual change in the angular momentum axis during gas infall. 
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  9. Abstract We present an overview of the Large Program, “Early Planet Formation in Embedded Disks (eDisk),” conducted with the Atacama Large Millimeter/submillimeter Array (ALMA). The ubiquitous detections of substructures, particularly rings and gaps, in protoplanetary disks around T Tauri stars raise the possibility that at least some planet formation may have already started during the embedded stages of star formation. In order to address exactly how and when planet formation is initiated, the program focuses on searching for substructures in disks around 12 Class 0 and 7 Class I protostars in nearby (<200 pc) star-forming regions through 1.3 mm continuum observations at a resolution of ∼7 au (0.″04). The initial results show that the continuum emission, mostly arising from dust disks around the sample protostars, has relatively few distinctive substructures, such as rings and spirals, in marked contrast to Class II disks. The dramatic difference may suggest that substructures quickly develop in disks when the systems evolve from protostars to Class II sources, or alternatively that high optical depth of the continuum emission could obscure internal structures. Kinematic information obtained through CO isotopologue lines and other lines reveals the presence of Keplerian disks around protostars, providing us with crucial physical parameters, in particular, the dynamical mass of the central protostars. We describe the background of the eDisk program, the sample selection and their ALMA observations, and the data reduction, and we also highlight representative first-look results. 
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  10. Abstract

    We have observed the Class 0/I protostellar system Ced110 IRS4 at an angular resolution of 0.″05 (∼10 au) as part of the Atacama Large Millimeter/submillimeter Array large program, Early Planet Formation in Embedded Disks. The 1.3 mm dust continuum emission reveals that Ced110 IRS4 is a binary system with a projected separation of ∼250 au. The continuum emissions associated with the main source and its companion, named Ced110 IRS4A and IRS4B, respectively, exhibit disk-like shapes and likely arise from dust disks around the protostars. The continuum emission of Ced110 IRS4A has a radius of ∼110 au (∼0.″6) and shows bumps along its major axis with an asymmetry. The bumps can be interpreted as a shallow, ring-like structure at a radius of ∼40 au (∼0.″2) in the continuum emission, as demonstrated from two-dimensional intensity distribution models. A rotation curve analysis on the C18O and13COJ= 2–1 lines reveals the presence of a Keplerian disk within a radius of 120 au around Ced110 IRS4A, which supports the interpretation that the dust continuum emission arises from a disk. The ring-like structure in the dust continuum emission might indicate a possible annular substructure in the surface density of the embedded disk, although the possibility that it is an apparent structure due to the optically thick continuum emission cannot be ruled out.

     
    more » « less