skip to main content


Search for: All records

Creators/Authors contains: "Lord, Susan M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Multiple stakeholders are interested in measuring undergraduate student success in college across academic fields. Different metrics might appeal to different stakeholders. Some metrics such as the fraction of first-time, full-time students who start in the fall who graduate within six years, the graduation rate, are federally mandated by the U.S. Department of Education, Integrated Postsecondary Education Data System (IPEDS). We argue that this calculation of graduation rate is inherently problematic because it excludes up to 60% of students who transfer into an institution, enroll part-time, or enroll in terms other than the fall. By expanding the starters definition, we propose a graduation rate definition that includes conventionally excluded students and provides information on progression in a specific program. Stickiness is an even more-inclusive alternative, measuring a program’s success in graduating all undergraduates ever enrolled in the program. In this work, programs are grouped into six academic fields: Arts and Humanities, Business, Engineering, Other, Social Sciences, and STM (Science, Technology, and Mathematics. Stickiness is the percentage of students who ever enroll in an academic field that graduate in the same field. We use the Multiple Institution Dataset for Investigating Engineering Longitudinal Development (MIDFIELD) 2023 which contains unit-record data for over 2 million individual students at 19 institutions. For the academic fields studied, Engineering has the highest graduation rate and third highest stickiness. Social Sciences and Business also have higher graduation rates and stickiness than the other fields. We also track the relative fraction of students migrating to and from each academic field. This paper continues our work to derive better metrics for understanding student success. 
    more » « less
    Free, publicly-accessible full text available October 18, 2024
  2. Funded by the National Science Foundation (NSF) Racial Equity in STEM Education Program, this project aims to deeply interrogate the influence and pervasiveness of Whiteness in engineering culture. While there has been substantial research into the masculinity of engineering, Whiteness has received far less attention. We claim the centrality of Whiteness in engineering curricula informs the culture, climate, and discourse of engineering education, leading to an exclusionary culture within engineering as reflected by the lack of diversity and lower retention of students and faculty of color, and contributes to systemic barriers negatively impacting racial equity. Moving towards racial equity in engineering education requires a fundamental shift in thinking in two important ways: 1) we must reframe how we think about underserved populations from minority to minoritized by a dominant discourse, and 2) to begin to dismantle the impacts of Whiteness, we must first make this barrier visible. In the first year of this project, the diverse team of PIs began to explore scripts of Whiteness in engineering education by conducting a collaborative autoethnography through documenting and analyzing their own experiences facing, enacting, and challenging scripts of Whiteness in engineering spaces. A collaborative autoethnography (CAE) takes a collaborative approach to the process of critical self reflection and can be conducted in many forms, such as such as collecting personal memory data (e.g., journaling), interviewing each other, facilitating intentional dialogue, or observing each other (e.g., in the classroom). CAE is not a linear process, but requires an ongoing dialogue (conversations, negotiations, or even arguments) between researcher team members over a long period (at least months, if not years). Our diverse viewpoints and years-long experience working together facilitated rich conversations that let us interrogate the ways in which Whiteness reveals its form differently depending on one’s positionality. In the later years of the project, we will create a faculty development program intended to help engineering faculty develop their critical consciousness and begin to decenter Whiteness from their ways of thinking and discourses (i.e., beliefs, attitudes, value systems, actions, etc.) so they can begin to critically think about promoting and enacting practices that move engineering education toward racial equity. Although the pathway to critical consciousness is not linear, it is a one-way street; once faculty begin to see the systemic barriers (such as those created by scripts of Whiteness) around them, there is no going back. In the long term, we hope to lay the groundwork for recognizing, interrogating, and eventually dismantling forces of systemic oppression in engineering higher education. 
    more » « less
    Free, publicly-accessible full text available June 25, 2024
  3. Does emphasizing the role of people in engineering influence the memorability of engineering content? This study is part of a larger project through which our team developed a new undergraduate energy course to better reflect students’ cultures and lived experiences through asset-based pedagogies to help students develop a sociotechnical mindset in engineering problem solving. In this study, students in the class were invited to participate in semi-structured interviews (n=5) to explore our effectiveness in helping them develop a sociotechnical mindset around energy issues and conceptualize engineering as a sociotechnical endeavor. This study focuses on an activity during the interview where the participants were asked to sort a variety of images associated with class learning experiences along a spectrum of least to most memorable. Emergent themes from students’ responses revolved around learning experiences that included global perspectives and emphasized a “who” (i.e., whose problems, who is impacted by engineering, and what type of engineers the students will choose to become) as the most memorable. Our results indicate that students found the sociotechnical aspects of the course more memorable than the traditional canonical engineering content. These findings suggest that framing engineering content as sociotechnical can be one strategy to increase student engagement, increase memorability of lessons, and help students to think more deeply about their own goals as future engineers. 
    more » « less
    Free, publicly-accessible full text available July 6, 2024
  4. In the spring of 2021, the University of San Diego’s Department of Integrated Engineering taught the course, “Integrated Approach to Energy”, the second offering of a new required course, to nine second-year engineering students. The sociotechnical course covered modern energy concepts, with an emphasis on renewable energies and sustainability, and it exposed the students to other ways of being, knowing, and doing that deviated from the dominant masculine Western White colonial discourse. Following the course completion, we interviewed five students by using a semistructured protocol to explore how they perceived of and communicated about engineers and engineering. We sought to identify the takeaways from their course exposure to sustainability and the sociotechnical paradigm, which were central to the course. The findings suggest that the students were beginning to form sociotechnical descriptions, and that they were still developing their understanding and perceptions of engineers and engineering. Moreover, we observed that they were still wrestling with how best to integrate sustainability into those perceptions. There was an a-la-carte feel to the students’ conceptualizations of sustainability as it related to engineering, as in, “you can ‘do’ sustainability with engineering, but do not have to”. We argue that engineering students likely need these pedagogical paradigms (sociotechnical engineering and sustainability) woven through the entirety of their engineering courses if they are to fully accept and integrate them into their own constructs about engineers and engineering. 
    more » « less
  5. null (Ed.)
    Engineers are increasingly called on to develop sustainable solutions to complex problems. Within engineering, however, economic and environmental aspects of sustainability are often prioritized over social ones. This paper describes how efficiency and sustainability were conceptualized and interrelated by students in a newly developed second-year undergraduate engineering course, An Integrated Approach to Energy. This course took a sociotechnical approach and emphasized modern energy concepts (e.g., renewable energy), current issues (e.g., climate change), and local and personal contexts (e.g., connecting to students’ lived experiences). Analyses of student work and semi-structured interview data were used to explore how students conceptualized sustainability and efficiency. We found that in this cohort (n = 17) students often approached sustainability through a lens of efficiency, believing that if economic and environmental resources were prioritized and optimized, sustainability would be achieved. By exploring sustainability and efficiency together, we examined how dominant discourses that privilege technical over social aspects in engineering can be replicated within an energy context. 
    more » « less
  6. null (Ed.)
    Within engineering, Western, White, colonial knowledge has historically been privileged over other ways of knowing. Few engineering educators recognize the impact of ethnocentricity and masculinity of the engineering curriculum on our students. In this paper we argue for a new approach, one which seeks to create an engineering curriculum that recognizes the great diversity of cultural practices that exist in the world. We begin by reviewing key ideas from three pedagogies not typically incorporated in engineering education: Culturally Relevant/Responsive Pedagogy, Culturally Sustaining Pedagogy, and Indigenous Pedagogy. We then present our attempts to develop an engineering curricula informed by these practices. We describe interventions we have tried at two levels: modules within traditional engineering sciences and entirely new courses. We aim to convince readers that these pedagogies may be a key tool in changing the dominant discourse of engineering education, improving the experience for those students already here, and making it more welcoming to those who are not. 
    more » « less
  7. null (Ed.)
    The global pandemic of COVID-19 brought about the transition to Emergency Remote Teaching (ERT) at higher education institutions across the United States, prompting both students and the faculty to rapidly adjust to a different modality of teaching and learning. Other crises have induced disruptions to academic continuity (e.g., earthquakes, hurricanes), but not to the same extent as COVID-19, which has affected universities on a global scale. In this paper, we describe a qualitative case study where we interviewed 11 second-year Integrated Engineering students during the Spring 2020 semester to explore how they adapted to the transition to remote learning. Our results revealed several student challenges, how they used self-discipline strategies to overcome them, and how the faculty supported students in the classroom through a compassionate and flexible pedagogy. Faculty members showed compassion and flexibility by adjusting the curriculum and assessment and effectively communicating with students. This was especially important for the women participants in this study, who more frequently expressed utilizing pass/fail grading and the personal and gendered challenges they faced due to the pandemic. During this unprecedented crisis, we found that a key element for supporting students’ well-being and success is the faculty members communicating care and incorporating flexibility into their courses. 
    more » « less