skip to main content


Search for: All records

Creators/Authors contains: "Louie, Steven G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 3, 2025
  2. Electron-hole bound pairs, or excitons, are common excitations in semiconductors. They can spontaneously form and condense into a new insulating ground state—the so-called excitonic insulator—when the energy of electron-hole Coulomb attraction exceeds the band gap. In the presence of electron-phonon coupling, a periodic lattice distortion often concomitantly occurs. However, a similar structural transition can also be induced by electron-phonon coupling itself, therefore hindering the clean identification of bulk excitonic insulators (e.g., which instability is the driving force of the phase transition). Using high-resolution synchrotron x-ray diffraction and angle-resolved photoemission spectroscopy, we identify key electron-phonon coupling effects in a leading excitonic insulator candidate Ta 2 NiSe 5 . These include an extensive unidirectional lattice fluctuation and an electronic pseudogap in the normal state, as well as a negative electronic compressibility in the charge-doped broken-symmetry state. In combination with first principles and model calculations, we use the normal state electronic spectra to quantitatively determine the electron-phonon interaction vertex g and interband Coulomb interaction V in the minimal lattice model, the solution to which captures the experimental observations. Moreover, we show how the Coulomb and electron-phonon coupling effects can be unambiguously separated based on the solution to quantified microscopic models. Finally, we discuss how the strong lattice fluctuations enabled by low dimensionality relate to the unique electron-phonon interaction effects beyond the textbook Born-Oppenheimer approximation. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  3. Abstract

    During a band-gap-tuned semimetal-to-semiconductor transition, Coulomb attraction between electrons and holes can cause spontaneously formed excitons near the zero-band-gap point, or the Lifshitz transition point. This has become an important route to realize bulk excitonic insulators – an insulating ground state distinct from single-particle band insulators. How this route manifests from weak to strong coupling is not clear. In this work, using angle-resolved photoemission spectroscopy (ARPES) and high-resolution synchrotron x-ray diffraction (XRD), we investigate the broken symmetry state across the semimetal-to-semiconductor transition in a leading bulk excitonic insulator candidate system Ta2Ni(Se,S)5. A broken symmetry phase is found to be continuously suppressed from the semimetal side to the semiconductor side, contradicting the anticipated maximal excitonic instability around the Lifshitz transition. Bolstered by first-principles and model calculations, we find strong interband electron-phonon coupling to play a crucial role in the enhanced symmetry breaking on the semimetal side of the phase diagram. Our results not only provide insight into the longstanding debate of the nature of intertwined orders in Ta2NiSe5, but also establish a basis for exploring band-gap-tuned structural and electronic instabilities in strongly coupled systems.

     
    more » « less
  4. X-ray absorption spectroscopy (XAS) is a powerful experimental technique to probe the local order in materials with core electron excitations. Experimental interpretation requires supporting theoretical calculations. For water, these calculations are very demanding and, to date, could only be done with major approximations that limited the accuracy of the calculated spectra. This prompted an intense debate on whether a substantial revision of the standard picture of tetrahedrally bonded water was necessary to improve the agreement of theory and experiment. Here, we report a first-principles calculation of the XAS of water that avoids the approximations of prior work, thanks to recent advances in electron excitation theory. The calculated XAS spectra, and their variation with changes of temperature and/or with isotope substitution, are in good quantitative agreement with experiments. The approach requires accurate quasiparticle wave functions beyond density functional theory approximations, accounts for the dynamics of quasiparticles, and includes dynamic screening as well as renormalization effects due to the continuum of valence-level excitations. The three features observed in the experimental spectra are unambiguously attributed to excitonic effects. The preedge feature is associated with a bound intramolecular exciton, the main-edge feature is associated with an exciton localized within the coordination shell of the excited molecule, and the postedge feature is delocalized over more distant neighbors, as expected for a resonant state. The three features probe the local order at short, intermediate, and longer range relative to the excited molecule. The calculated spectra are fully consistent with a standard tetrahedral picture of water. 
    more » « less
  5. Abstract Complex correlated states emerging from many-body interactions between quasiparticles (electrons, excitons and phonons) are at the core of condensed matter physics and material science. In low-dimensional materials, quantum confinement affects the electronic, and subsequently, optical properties for these correlated states. Here, by combining photoluminescence, optical reflection measurements and ab initio theoretical calculations, we demonstrate an unconventional excitonic state and its bound phonon sideband in layered silicon diphosphide (SiP 2 ), where the bound electron–hole pair is composed of electrons confined within one-dimensional phosphorus–phosphorus chains and holes extended in two-dimensional SiP 2 layers. The excitonic state and emergent phonon sideband show linear dichroism and large energy redshifts with increasing temperature. Our ab initio many-body calculations confirm that the observed phonon sideband results from the correlated interaction between excitons and optical phonons. With these results, we propose layered SiP 2 as a platform for the study of excitonic physics and many-particle effects. 
    more » « less