skip to main content


Search for: All records

Creators/Authors contains: "Lu, Jessica R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the kinematic analysis of 246 stars within4from the center of Orion Nebula Cluster (ONC), the closest massive star cluster with active star formation across the full mass range, which provides valuable insights in the formation and evolution of star cluster on an individual-star basis. High-precision radial velocities and surface temperatures are retrieved from spectra acquired by the NIRSPEC instrument used with adaptive optics (NIRSPAO) on the Keck II 10 m telescope. A 3D kinematic map is then constructed by combining with the proper motions previously measured by the Hubble Space Telescope Advanced Camera for Surveys/WFPC2/WFC3IR and Keck II NIRC2. The measured root-mean-squared velocity dispersion is 2.26 ± 0.08 km s−1, significantly higher than the virial equilibrium’s requirement of 1.73 km s−1, suggesting that the ONC core is supervirial, consistent with previous findings. Energy equipartition is not detected in the cluster. Most notably, the velocity of each star relative to its neighbors is found to be negatively correlated with stellar mass. Low-mass stars moving faster than their surrounding stars in a supervirial cluster suggests that the initial masses of forming stars may be related to their initial kinematic states. Additionally, a clockwise rotation preference is detected. A weak sign of inverse mass segregation is also identified among stars excluding the Trapezium stars, although it could be a sample bias. Finally, this study reports the discovery of four new candidate spectroscopic binary systems.

     
    more » « less
  2. Abstract

    There are expected to be ∼108isolated black holes (BHs) in the Milky Way. OGLE-2011-BLG-0462/MOA-2011-BLG-191 (OB110462) is the only such BH with a mass measurement to date. However, its mass is disputed: Lam et al. measured a lower mass of 1.6–4.4M, while Sahu et al. and Mróz et al. measured a higher mass of 5.8–8.7M. We reanalyze OB110462, including new data from the Hubble Space Telescope (HST) and rereduced Optical Gravitational Lensing Experiment (OGLE) photometry. We also rereduce and reanalyze the HST data set with newly available software. We find significantly different (∼1 mas) HST astrometry than Lam et al. in the unmagnified epochs due to the amount of positional bias induced by a bright star ∼0.″4 from OB110462. After modeling the updated photometric and astrometric data sets, we find the lens of OB110462 is a6.01.0+1.2MBH. Future observations with the Nancy Grace Roman Space Telescope, which will have an astrometric precision comparable or better to HST but a field of view 100× larger, will be able to measure hundreds of isolated BH masses via microlensing. This will enable the measurement of the BH mass distribution and improve understanding of massive stellar evolution and BH formation channels.

     
    more » « less
  3. Abstract

    From the formation mechanisms of stars and compact objects to nuclear physics, modern astronomy frequently leverages surveys to understand populations of objects to answer fundamental questions. The population of dark and isolated compact objects in the Galaxy contains critical information related to many of these topics, but is only practically accessible via gravitational microlensing. However, photometric microlensing observables are degenerate for different types of lenses, and one can seldom classify an event as involving either a compact object or stellar lens on its own. To address this difficulty, we apply a Bayesian framework that treats lens type probabilistically and jointly with a lens population model. This method allows lens population characteristics to be inferred despite intrinsic uncertainty in the lens class of any single event. We investigate this method’s effectiveness on a simulated ground-based photometric survey in the context of characterizing a hypothetical population of primordial black holes (PBHs) with an average mass of 30M. On simulated data, our method outperforms current black hole (BH) lens identification pipelines and characterizes different subpopulations of lenses while jointly constraining the PBH contribution to dark matter to ≈25%. Key to robust inference, our method can marginalize over population model uncertainty. We find the lower mass cutoff for stellar origin BHs, a key observable in understanding the BH mass gap, particularly difficult to infer in our simulations. This work lays the foundation for cutting-edge PBH abundance constraints to be extracted from current photometric microlensing surveys.

     
    more » « less
  4. Abstract

    The astrometric precision and accuracy of an imaging camera is often limited by geometric optical distortions. These must be calibrated and removed to measure precise proper motions, orbits, and gravitationally lensed positions of interesting astronomical objects. Here, we derive a distortion solution for the OSIRIS Imager fed by the Keck I adaptive optics system at the W. M. Keck Observatory. The distortion solution was derived from images of the dense globular clusters M15 and M92 taken with OSIRIS in 2020 and 2021. The set of 403 starlists, each containing ∼1000 stars, were compared to reference Hubble catalogs to measure the distortion-induced positional differences. OSIRIS was opened and optically realigned in 2020 November and the distortion solutions before and after the opening show slight differences at the ∼20 mas level. We find that the OSIRIS distortion closely matches the designed optical model: large, reaching 20 pixels at the corners, but mostly low order, with the majority of the distortion in the 2nd-order mode. After applying the new distortion correction, we find a median residual of [x, y] = [0.052, 0.056] pixels ([0.51, 0.56] mas) for the 2020 solution, and [x, y] = [0.081, 0.071] pixels ([0.80, 0.71] mas) for the 2021 solution. Comparison between NIRC2 images and OSIRIS images of the Galactic center show that the mean astrometric difference between the two instruments reduces from 10.7 standard deviations to 1.7 standard deviations when the OSIRIS distortion solution is applied. The distortion model is included in the Keck AO Imaging data-reduction pipeline and is available for use on OSIRIS data.

     
    more » « less
  5. Abstract

    Microlensing events have historically been discovered throughout the Galactic bulge and plane by surveys designed solely for that purpose. We conduct the first multiyear search for microlensing events on the Zwicky Transient Facility (ZTF), an all-sky optical synoptic survey that observes the entire visible northern sky every few nights. We discover 60 high-quality microlensing events in the 3 yr of ZTF-I using the bulk lightcurves in the ZTF Public Data Release 5.19 of our events are found outside of the Galactic plane (∣b∣ ≥ 10°), nearly doubling the number of previously discovered events in the stellar halo from surveys pointed toward the Magellanic Clouds and the Andromeda galaxy. We also record 1558 ongoing candidate events as potential microlensing that can continue to be observed by ZTF-II for identification. The scalable and computationally efficient methods developed in this work can be applied to future synoptic surveys, such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time and the Nancy Grace Roman Space Telescope, as they attempt to find microlensing events in even larger and deeper data sets.

     
    more » « less
  6. Abstract

    Sgr A* is the variable electromagnetic source associated with accretion onto the Galactic center supermassive black hole. While the near-infrared (NIR) variability of Sgr A* was shown to be consistent over two decades, unprecedented activity in 2019 challenges existing statistical models. We investigate the origin of this activity by recalibrating and reanalyzing all of our Keck Observatory Sgr A* imaging observations from 2005–2022. We present light curves from 69 observation epochs using the NIRC2 imager at 2.12μm with laser-guide star adaptive optics. These observations reveal that the mean luminosity of Sgr A* increased by a factor of ∼3 in 2019, and the 2019 light curves had higher variance than in all time periods we examined. We find that the 2020–2022 flux distribution is statistically consistent with the historical sample and model predictions, but with fewer bright measurements above 0.6 mJy at the ∼2σlevel. Since 2019, we have observed a maximumKs(2.2μm) flux of 0.9 mJy, compared to the highest pre-2019 flux of 2.0 mJy and highest 2019 flux of 5.6 mJy. Our results suggest that the 2019 activity was caused by a temporary accretion increase onto Sgr A*, possibly due to delayed accretion of tidally stripped gas from the gaseous object G2 in 2014. We also examine faint Sgr A* fluxes over a long time baseline to search for a quasi-steady quiescent state. We find that Sgr A* displays flux variations over a factor of ∼500, with no evidence for a quiescent state in the NIR.

     
    more » « less
  7. Geometric optical distortion is a significant contributor to the astrometric error budget in large telescopes using adaptive optics. To increase astrometric precision, optical distortion calibration is necessary. We investigate using smartphone Organic Light-Emitting Diode (OLED) screens as astrometric calibrators. Smartphones are low-cost, have stable illumination, and can be quickly reconfigured to probe different spatial frequencies of an optical system’s geometric distortion. In this work, we characterize the astrometric accuracy of a Samsung S20 smartphone, with a view towards providing large format, flexible astrometric calibrators for the next generation of astronomical instruments. We find the placement error of the pixels to be 189[Formula: see text]nm ± 15[Formula: see text]nm Root Mean Square (RMS). At this level of error, milliarcsecond astrometric accuracy can be obtained on modern astronomical instruments. 
    more » « less
  8. Abstract We measured the precise masses of the host and planet in the OGLE-2003-BLG-235 system, when the lens and source were resolving, with 2018 Keck high resolution images. This measurement is in agreement with the observation taken in 2005 with the Hubble Space Telescope (HST). In the 2005 data, the lens and sources were not resolved and the measurement was made using color-dependent centroid shift only. The Nancy Grace Roman Space Telescope will measure masses using data typically taken within 3–4 yr of the peak of the event, which is a much shorter baseline when compared to most of the mass measurements to date. Hence, the color-dependent centroid shift will be one of the primary methods of mass measurements for the Roman telescope. Yet, mass measurements of only two events (OGLE-2003-BLG-235 and OGLE-2005-BLG-071) have been done using the color-dependent centroid shift method so far. The accuracy of the measurements using this method are neither completely known nor well studied. The agreement of the Keck and HST results, as shown in this paper, is very important because this agreement confirms the accuracy of the mass measurements determined at a small lens-source separation using the color-dependent centroid shift method. It also shows that with >100 high resolution images, the Roman telescope will be able to use color-dependent centroid shift at a 3–4 yr time baseline and produce mass measurements. We find that OGLE-2003-BLG-235 is a planetary system that consists of a 2.34 ± 0.43 M Jup planet orbiting a 0.56 ± 0.06 M ⊙ K-dwarf host star at a distance of 5.26 ± 0.71 kpc from the Sun. 
    more » « less
    Free, publicly-accessible full text available April 19, 2024
  9. Abstract

    We present new absolute proper-motion measurements for the Arches and Quintuplet clusters, two young massive star clusters near the Galactic center. Using multiepoch HST observations, we construct proper-motion catalogs for the Arches (∼35,000 stars) and Quintuplet (∼40,000 stars) fields in ICRF coordinates established using stars in common with the Gaia EDR3 catalog. The bulk proper motions of the clusters are measured to be (μα*,μδ) = (−0.80 ± 0.032, −1.89 ± 0.021) mas yr−1for the Arches and (μα*,μδ) = (−0.96 ± 0.032, −2.29 ± 0.023) mas yr−1for the Quintuplet, achieving ≳5× higher precision than past measurements. We place the first constraints on the properties of the cluster orbits that incorporate the uncertainty in their current line-of-sight distances. The clusters will not approach closer than ∼25 pc to Sgr A*, making it unlikely that they will inspiral into the nuclear star cluster within their lifetime. Further, the cluster orbits are not consistent with being circular; the average value ofrapo/rperiis ∼1.9 (equivalent to an eccentricity of ∼0.31) for both clusters. Lastly, we find that the clusters do not share a common orbit, challenging one proposed formation scenario in which the clusters formed from molecular clouds on the open stream orbit derived by Kruijssen et al. Meanwhile, our constraints on the birth location and velocity of the clusters offer mild support for a scenario in which the clusters formed via collisions between gas clouds on thex1andx2bar orbit families.

     
    more » « less