skip to main content


Search for: All records

Creators/Authors contains: "Lucena, Frankie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Here we report the first observations of gigantic jets (GJs) by the Geostationary Lightning Mapper (GLM) on board the Geostationary Operational Environmental Satellite‐R series. Fourteen GJs produced by Tropical Storm Harvey on 19 August 2017 were observed by both GLM and a ground‐based low‐light‐level camera system. The majority of the GJs produced distinguishable signatures in the GLM data, which include long continuous emissions, large peak flash optical energies, and small lateral propagation distances in comparison with other flashes observed by GLM. For two GJs with the best ground‐based images, each have a single pixel that contains the largest optical energy throughout the duration of the GJ and also coincides with the azimuth of the GJ from the video images. The optical energy of the pixel increases as the GJ propagates upward, reaches its peak when the GJ connects to the ionosphere, and then fades away.

     
    more » « less
  2. Abstract

    More than three dozen red sprites were captured above Hurricane Matthew on the nights of 1 and 2 October 2016 as it passed to the north of Venezuela after undergoing rapid intensification. Analyses using broadband magnetic fields indicate that all of the sprites were produced by positive cloud‐to‐ground (CG) strokes located within the outer rainbands as defined by relatively cold cloud top brightness temperatures (≤194 K). Negative CG strokes with impulse charge transfers exceeding the threshold of sprite production also existed, but the timescale of the charge transfer was not sufficiently long to develop streamers. The reported observations are contrary to the finding of the Imager of Sprites/Upper Atmospheric Lightning showing that sprites are preferentially produced by negative strokes in the same geographic region. Further ground‐based observations are desired to obtain additional insights into the convective regimes associated with the dominance of negative sprites in many oceanic and coastal thunderstorms.

     
    more » « less