skip to main content


Search for: All records

Creators/Authors contains: "Lugaro, Maria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Many of the short-lived radioactive nuclei that were present in the early solar system can be produced in massive stars. In the first paper in this series, we focused on the production of26Al in massive binaries. In our second paper, we considered rotating single stars; two more short-lived radioactive nuclei,36Cl and41Ca; and the comparison to the early solar system data. In this work, we update our previous conclusions by further considering the impact of binary interactions. We used the MESA stellar evolution code with an extended nuclear network to compute massive (10–80M), binary stars at various initial periods and solar metallicity (Z= 0.014), up to the onset of core collapse. The early solar system abundances of26Al and41Ca can be matched self-consistently by models with initial masses ≥25M, while models with initial primary masses ≥35Mcan also match36Cl. Almost none of the models provide positive net yields for19F, while for22Ne the net yields are positive from 30Mand higher. This leads to an increase by a factor of approximately 4 in the amount of22Ne produced by a stellar population of binary stars, relative to single stars. In addition, besides the impact on the stellar yields, our 10Mprimary star undergoing Case A mass transfer ends its life as a white dwarf instead of as a core-collapse supernova. This demonstrates that binary interactions can also strongly impact the evolution of stars close to the supernova boundary.

     
    more » « less
  2. Abstract Analysis of bulk meteorite compositions has revealed small isotopic variations due to the presence of material (e.g., stardust) that preserved the signature of nuclear reactions occurring in specific stellar sites. The interpretation of such anomalies provides evidence for the environment of the birth of the Sun, its accretion process, the evolution of the solar proto-planetary disk, and the formation of the planets. A crucial element of such interpretation is the comparison of the observed anomalies to predictions from models of stellar nucleosynthesis. To date, however, this comparison has been limited to a handful of model predictions. This is mostly because the calculated stellar abundances need to be transformed into a specific representation, which nuclear astrophysicists and stellar nucleosynthesis researchers are not familiar with. Here, we show in detail that this representation is needed to account for mass fractionation effects in meteorite data that can be generated both in nature and during instrumental analysis. We explain the required internal normalisation to a selected isotopic ratio, describe the motivations behind such representation more widely, and provide the tools to perform the calculations. Then, we present some examples considering two elements produced by the slow neutron-capture ( s ) process: Sr and Mo. We show which specific representations for the Sr isotopic composition calculated by s -process models better disentangle the nucleosynthetic signatures from stars of different metallicity. For Mo, the comparison between data and models is improved due to a recent re-analysis of the $$^{95}$$ 95 Mo neutron-capture cross section. 
    more » « less
  3. ABSTRACT The cosmic production of the short-lived radioactive nuclide 26Al is crucial for our understanding of the evolution of stars and galaxies. However, simulations of the stellar sites producing 26Al are still weakened by significant nuclear uncertainties. We re-evaluate the 26Al(n, p)26Mg, and 26Al(n, α)23Na ground state reactivities from 0.01 GK to 10 GK, based on the recent n_TOF measurement combined with theoretical predictions and a previous measurement at higher energies, and test their impact on stellar nucleosynthesis. We computed the nucleosynthesis of low- and high-mass stars using the Monash nucleosynthesis code, the NuGrid mppnp code, and the FUNS stellar evolutionary code. Our low-mass stellar models cover the 2–3 M⊙ mass range with metallicities between Z = 0.01 and 0.02, their predicted 26Al/27Al ratios are compared to 62 meteoritic SiC grains. For high-mass stars, we test our reactivities on two 15 M⊙ models with Z = 0.006 and 0.02. The new reactivities allow low-mass AGB stars to reproduce the full range of 26Al/27Al ratios measured in SiC grains. The final 26Al abundance in high-mass stars, at the point of highest production, varies by a factor of 2.4 when adopting the upper, or lower limit of our rates. However, stellar uncertainties still play an important role in both mass regimes. The new reactivities visibly impact both low- and high-mass stars nucleosynthesis and allow a general improvement in the comparison between stardust SiC grains and low-mass star models. Concerning explosive nucleosynthesis, an improvement of the current uncertainties between T9∼0.3 and 2.5 is needed for future studies. 
    more » « less
  4. ABSTRACT

    Theoretical physical-chemical models for the formation of planetary systems depend on data quality for the Sun’s composition, that of stars in the solar neighbourhood, and of the estimated ’pristine’ compositions for stellar systems. The effective scatter and the observational uncertainties of elements within a few hundred parsecs from the Sun, even for the most abundant metals like carbon, oxygen and silicon, are still controversial. Here we analyse the stellar production and the chemical evolution of key elements that underpin the formation of rocky (C, O, Mg, Si) and gas/ice giant planets (C, N, O, S). We calculate 198 galactic chemical evolution (GCE) models of the solar neighbourhood to analyse the impact of different sets of stellar yields, of the upper mass limit for massive stars contributing to GCE (Mup) and of supernovae from massive-star progenitors which do not eject the bulk of the iron-peak elements (faint supernovae). Even considering the GCE variation produced via different sets of stellar yields, the observed dispersion of elements reported for stars in the Milky Way (MW) disc is not reproduced. Among others, the observed range of super-solar [Mg/Si] ratios, sub-solar [S/N], and the dispersion of up to 0.5 dex for [S/Si] challenge our models. The impact of varying Mup depends on the adopted supernova yields. Thus, observations do not provide a constraint on the Mup parametrization. When including the impact of faint supernova models in GCE calculations, elemental ratios vary by up to 0.1–0.2 dex in the MW disc; this modification better reproduces observations.

     
    more » « less
  5. Abstract

    While modeling the galactic chemical evolution (GCE) of stable elements provides insights to the formation history of the Galaxy and the relative contributions of nucleosynthesis sites, modeling the evolution of short-lived radioisotopes (SLRs) can provide supplementary timing information on recent nucleosynthesis. To study the evolution of SLRs, we need to understand their spatial distribution. Using a three-dimensional GCE model, we investigated the evolution of four SLRs:53Mn,60Fe,182Hf, and244Pu with the aim of explaining detections of recent (within the last ≈1–20 Myr) deposition of live53Mn,60Fe, and244Pu of extrasolar origin into deep-sea reservoirs. We find that core-collapse supernovae are the dominant propagation mechanism of SLRs in the Galaxy. This results in the simultaneous arrival of these four SLRs on Earth, although they could have been produced in different astrophysical sites, which can explain why live extrasolar53Mn,60Fe, and244Pu are found within the same, or similar, layers of deep-sea sediments. We predict that182Hf should also be found in such sediments at similar depths.

     
    more » « less
  6. We investigate the origin in the early Solar System of the short-lived radionuclide 244Pu (with a half life of 80 Myr) produced by the rapid (r) neutron-capture process. We consider two large sets of r-process nucleosynthesis models and analyse if the origin of 244Pu in the ESS is consistent with that of the other r and slow (s) neutron-capture process radioactive nuclei. Uncertainties on the r-process models come from both the nuclear physics input and the astrophysical site. The former strongly affects the ratios of isotopes of close mass (129I/127I, 244Pu/238U, and 247Pu/235U). The 129I/247Cm ratio, instead, which involves isotopes of a very different mass, is much more variable than those listed above and is more affected by the physics of the astrophysical site. We consider possible scenarios for the evolution of the abundances of these radioactive nuclei in the galactic interstellar medium and verify under which scenarios and conditions solutions can be found for the origin of 244Pu that are consistent with the origin of the other isotopes. Solutions are generally found for all the possible different regimes controlled by the interval (δ) between additions from the source to the parcel of interstellar medium gas that ended up in the Solar System, relative to decay timescales. If r-process ejecta in interstellar medium are mixed within a relatively small area (leading to a long δ), we derive that the last event that explains the 129I and 247Cm abundances in the early Solar System can also account for the abundance of 244Pu. Due to its longer half life, however, 244Pu may have originated from a few events instead of one only. If r-process ejecta in interstellar medium are mixed within a relatively large area (leading to a short δ), we derive that the time elapsed from the formation of the molecular cloud to the formation of the Sun was 9-16 Myr. 
    more » « less
  7. Open clusters appear as simple objects in many respects, with a high degree of homogeneity in their (initial) chemical composition, and the typical solar-scaled abundance pattern that they exhibit for the majority of the chemical species. The striking singularity is represented by heavy elements produced from the slow process of the neutron-capture reactions. In particular, young open clusters (ages less than a few hundred Myr) give rise to the so-called barium puzzle: that is an extreme enhancement in their [Be/Fe] ratios, up to a factor of four of the solar value, which is not followed by other nearby s-process elements (e.g., lanthanum and cerium). The definite explanation for such a peculiar trend is still wanting, as many different solutions have been envisaged. We review the status of this field and present our new results on young open clusters and the pre-main sequence star RZ Piscium. 
    more » « less
  8. Abstract Isotope variations of nucleosynthetic origin among solar system solid samples are well documented, yet the origin of these variations is still uncertain. The observed variability of 54 Cr among materials formed in different regions of the protoplanetary disk has been attributed to variable amounts of presolar, chromium-rich oxide (chromite) grains, which exist within the meteoritic stardust inventory and most likely originated from some type of supernova explosion. To investigate if core-collapse supernovae (CCSNe) could be the site of origin of these grains, we analyze yields of CCSN models of stars with initial masses 15, 20, and 25 M ⊙ , and solar metallicity. We present an extensive abundance data set of the Cr, Mg, and Al isotopes as a function of enclosed mass. We find cases in which the explosive C ashes produce a composition in good agreement with the observed 54 Cr/ 52 Cr and 53 Cr/ 52 Cr ratios as well as the 50 Cr/ 52 Cr ratios. Taking into account that the signal at atomic mass 50 could also originate from 50 Ti, the ashes of explosive He burning also match the observed ratios. Addition of material from the He ashes (enriched in Al and Cr relative to Mg to simulate the make-up of chromite grains) to the solar system’s composition may reproduce the observed correlation between Mg and Cr anomalies, while material from the C ashes does not present significant Mg anomalies together with Cr isotopic variations. In all cases, nonradiogenic, stable Mg isotope variations dominate over the variations expected from 26 Al. 
    more » « less
  9. ABSTRACT Short-lived radioactive isotopes (SLRs) with half-lives between 0.1 and 100 Myr can be used to probe the origin of the Solar system. In this work, we examine the core-collapse supernovae production of the 15 SLRs produced: 26Al, 36Cl, 41Ca, 53Mn, 60Fe, 92Nb, 97Tc, 98Tc, 107Pd, 126Sn, 129I, 135Cs, 146Sm, 182Hf, and 205Pb. We probe the impact of the uncertainties of the core-collapse explosion mechanism by examining a collection of 62 core-collapse models with initial masses of 15, 20, and 25 M⊙, explosion energies between 3.4 × 1050 and 1.8 × 1052 erg and compact remnant masses between 1.5 and 4.89 M⊙. We identify the impact of both explosion energy and remnant mass on the final yields of the SLRs. Isotopes produced within the innermost regions of the star, such as 92Nb and 97Tc, are the most affected by the remnant mass, 92Nb varying by five orders of magnitude. Isotopes synthesized primarily in explosive C-burning and explosive He-burning, such as 60Fe, are most affected by explosion energies. 60Fe increases by two orders of magnitude from the lowest to the highest explosion energy in the 15 M⊙ model. The final yield of each examined SLR is used to compare to literature models. 
    more » « less