skip to main content


Search for: All records

Creators/Authors contains: "Lund, Michael B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    M dwarfs are ubiquitous in our Galaxy, and the rate at which they host stellar companions, and the properties of these companions, provide a window into the formation and evolution of the star(s), and of any planets that they may host. The Pervasive Overview of “Kompanions” of Every M dwarf in Our Neighborhood (POKEMON) speckle survey of nearby M dwarfs is volume limited from M0V through M9V out to 15 pc, with additional targets at larger distances. In total, 1125 stars were observed, and 455 of these are within the volume-limited, 15 pc sample of M-dwarf primaries. When we combine the speckle observations with known companions from the literature, we find that the stellar multiplicity rate of M dwarfs within 15 pc is 23.5% ± 2.0%, and that the companion rate is 28.8% ± 2.1%. We also find that the projected separation distribution for multiples that are known to host planets peaks at 198 au, while the distribution for multiples that are not yet known to host planets peaks at 5.57 au. This result suggests that the presence of close-in stellar companions inhibits the formation of M-dwarf planetary systems, similar to what has been found for FGK stars.

     
    more » « less
  2. Abstract

    Stellar multiplicity is correlated with many stellar properties, yet multiplicity measurements have proven difficult for the M dwarfs—the most common type of star in our galaxy—due to their faintness and the fact that a reasonably complete inventory of later M dwarfs did not exist until recently. We have therefore carried out the Pervasive Overview of “Kompanions” of Every M dwarf in Our Neighborhood (POKEMON) survey, which made use of the Differential Speckle Survey Instrument on the 4.3 m Lowell Discovery Telescope, along with the NN-EXPLORE Exoplanet Stellar Speckle Imager on the 3.5 m WIYN telescope. The POKEMON sample is volume limited from M0V through M9V out to 15 pc, with additional brighter targets at larger distances. In total, 1125 targets were observed. New discoveries were presented in the first paper in the series. In this second paper in the series, we present all detected companions, gauge our astrometric and photometric precision, and compare our filtered and filterless speckle observations. We find that the majority (58.9%) of the companions we detect in our speckle images are not resolved in Gaia, demonstrating the need for high-resolution imaging in addition to long-term astrometric monitoring. Additionally, we find that the majority (73.2%) of simulated stellar companions would be detectable by our speckle observations. Specifically within 100 au, we find that 70.3% of simulated companions are recovered. Finally, we discuss future directions of the POKEMON survey.

     
    more » « less
  3. ABSTRACT

    We present the confirmation of a hot super-Neptune with an exterior Neptune companion orbiting a bright (V  = 10.1 mag) F-dwarf identified by the Transiting Exoplanet Survey Satellite (TESS). The two planets, observed in sectors 45, 46, and 48 of the TESS extended mission, are $4.74_{-0.14}^{+0.16}$ and $3.86_{-0.16}^{+0.17}$ R⊕ with $5.4588385_{-0.0000072}^{+0.0000070}$ and $17.8999_{-0.0013}^{+0.0018}$ d orbital periods, respectively. We also obtained precise space-based photometric follow-up of the system with ESA’s CHaracterising ExOplanets Satellite to constrain the radius and ephemeris of TOI-5126 b. TOI-5126 b is located in the ‘hot Neptune Desert’ and is an ideal candidate for follow-up transmission spectroscopy due to its high-predicted equilibrium temperature (Teq = ${1442}_{-40}^{+46}$ K) implying a cloud-free atmosphere. TOI-5126 c is a warm Neptune (Teq = $971_{-27}^{+31}$ K) also suitable for follow-up. Tentative transit timing variations have also been identified in analysis, suggesting the presence of at least one additional planet, however this signal may be caused by spot-crossing events, necessitating further precise photometric follow-up to confirm these signals.

     
    more » « less
  4. Abstract

    TESS has proven to be a powerful resource for finding planets, including those that orbit the most prevalent stars in our galaxy: M dwarfs. Identification of stellar companions (both bound and unbound) has become a standard component of the transiting planet confirmation process in order to assess the level of light-curve dilution and the possibility of the target being a false positive. Studies of stellar companions have also enabled investigations into stellar multiplicity in planet-hosting systems, which has wide-ranging implications for both exoplanet detection and characterization, as well as for the formation and evolution of planetary systems. Speckle and AO imaging are some of the most efficient and effective tools for revealing close-in stellar companions; we therefore present observations of 58 M-dwarf TOIs obtained using a suite of speckle imagers at the 3.5 m WIYN telescope, the 4.3 m Lowell Discovery Telescope, and the 8.1 m Gemini North and South telescopes. These observations, as well as near-infrared adaptive optics images obtained for a subset (14) of these TOIs, revealed only two close-in stellar companions. Upon surveying the literature, and cross-matching our sample with Gaia, SUPERWIDE, and the catalog from El-Badry et al., we reveal an additional 15 widely separated common proper motion companions. We also evaluate the potential for undetected close-in companions. Taking into consideration the sensitivity of the observations, our findings suggest that the orbital period distribution of stellar companions to planet-hosting M dwarfs is shifted to longer periods compared to the expected distribution for field M dwarfs.

     
    more » « less
  5. ABSTRACT

    We report the discovery of TOI-2119b, a transiting brown dwarf (BD) that orbits and is completely eclipsed by an active M-dwarf star. Using light-curve data from the Transiting Exoplanet Survey Satellite mission and follow-up high-resolution Doppler spectroscopic observations, we find the BD has a radius of Rb = 1.08 ± 0.03RJ, a mass of Mb = 64.4 ± 2.3MJ, an orbital period of P = 7.200865 ± 0.00002 d, and an eccentricity of e = 0.337 ± 0.002. The host star has a mass of M⋆ = 0.53 ± 0.02M⊙, a radius of R⋆ = 0.50 ± 0.01R⊙, an effective temperature of Teff = 3621 ± 48K, and a metallicity of $\rm [Fe/H]=+0.06\pm 0.08$. TOI-2119b joins an emerging population of transiting BDs around M-dwarf host stars, with TOI-2119 being the ninth such system. These M-dwarf–brown dwarf systems typically occupy mass ratios near q = Mb/M⋆ ≈ 0.1−0.2, which separates them from the typical mass ratios for systems with transiting substellar objects and giant exoplanets that orbit more massive stars. The nature of the secondary eclipse of the BD by the star enables us to estimate the effective temperature of the substellar object to be 2030 ± 84K, which is consistent with predictions by substellar evolutionary models.

     
    more » « less
  6. Abstract We report the discovery of HIP-97166b (TOI-1255b), a transiting sub-Neptune on a 10.3 day orbit around a K0 dwarf 68 pc from Earth. This planet was identified in a systematic search of TESS Objects of Interest for planets with eccentric orbits, based on a mismatch between the observed transit duration and the expected duration for a circular orbit. We confirmed the planetary nature of HIP-97166b with ground-based radial-velocity measurements and measured a mass of M b = 20 ± 2 M ⊕ along with a radius of R b = 2.7 ± 0.1 R ⊕ from photometry. We detected an additional nontransiting planetary companion with M c sin i = 10 ± 2 M ⊕ on a 16.8 day orbit. While the short transit duration of the inner planet initially suggested a high eccentricity, a joint RV-photometry analysis revealed a high impact parameter b = 0.84 ± 0.03 and a moderate eccentricity. Modeling the dynamics with the condition that the system remain stable over >10 5 orbits yielded eccentricity constraints e b = 0.16 ± 0.03 and e c < 0.25. The eccentricity we find for planet b is above average for the small population of sub-Neptunes with well-measured eccentricities. We explored the plausible formation pathways of this system, proposing an early instability and merger event to explain the high density of the inner planet at 5.3 ± 0.9 g cc −1 as well as its moderate eccentricity and proximity to a 5:3 mean-motion resonance. 
    more » « less
  7. ABSTRACT We present the discovery and characterization of six short-period, transiting giant planets from NASA’s Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), and TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G < 11.8, 7.7 <K < 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program Working Group, we have determined that the planets are Jovian-sized (RP  = 0.99--1.45 RJ), have masses ranging from 0.92 to 5.26 MJ, and orbit F, G, and K stars (4766 ≤ Teff ≤ 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P  = 8.872 d, 0.394$^{+0.035}_{-0.038}$), TOI-2145 b (P  = 10.261 d, e  = $0.208^{+0.034}_{-0.047}$), and TOI-2497 b (P  = 10.656 d, e  = $0.195^{+0.043}_{-0.040}$). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 < log  g <4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; $5.26^{+0.38}_{-0.37}$ MJ (TOI-2145 b) and 4.82 ± 0.41 MJ (TOI-2497 b). These six new discoveries contribute to the larger community effort to use TESS to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies. 
    more » « less
  8. Abstract We report the discovery of TOI-2180 b, a 2.8 M J giant planet orbiting a slightly evolved G5 host star. This planet transited only once in Cycle 2 of the primary Transiting Exoplanet Survey Satellite (TESS) mission. Citizen scientists identified the 24 hr single-transit event shortly after the data were released, allowing a Doppler monitoring campaign with the Automated Planet Finder telescope at Lick Observatory to begin promptly. The radial velocity observations refined the orbital period of TOI-2180 b to be 260.8 ± 0.6 days, revealed an orbital eccentricity of 0.368 ± 0.007, and discovered long-term acceleration from a more distant massive companion. We conducted ground-based photometry from 14 sites spread around the globe in an attempt to detect another transit. Although we did not make a clear transit detection, the nondetections improved the precision of the orbital period. We predict that TESS will likely detect another transit of TOI-2180 b in Sector 48 of its extended mission. We use giant planet structure models to retrieve the bulk heavy-element content of TOI-2180 b. When considered alongside other giant planets with orbital periods over 100 days, we find tentative evidence that the correlation between planet mass and metal enrichment relative to stellar is dependent on orbital properties. Single-transit discoveries like TOI-2180 b highlight the exciting potential of the TESS mission to find planets with long orbital periods and low irradiation fluxes despite the selection biases associated with the transit method. 
    more » « less
  9. null (Ed.)