skip to main content


Search for: All records

Creators/Authors contains: "Luo, G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Records of the Ediacaran carbon cycle (635–541 million years ago) include the Shuram excursion (SE), the largest negative carbonate carbon isotope excursion in Earth history (down to −12‰). The nature of this excursion remains enigmatic given the difficulties of interpreting a perceived extreme global decrease in the δ13C of seawater dissolved inorganic carbon. Here, we present carbonate and organic carbon isotope (δ13Ccarband δ13Corg) records from the Ediacaran Doushantuo Formation along a proximal‐to‐distal transect across the Yangtze Platform of South China as a test of the spatial variation of theSE. Contrary to expectations, our results show that the magnitude and morphology of this excursion and its relationship with coexisting δ13Corgare highly heterogeneous across the platform. Integrated geochemical, mineralogical, petrographic, and stratigraphic evidence indicates that theSEis a primary marine signature. Data compilations demonstrate that theSEwas also accompanied globally by parallel negative shifts of δ34S of carbonate‐associated sulfate (CAS) and increased87Sr/86Sr ratio and coastalCASconcentration, suggesting elevated continental weathering and coastal marine sulfate concentration during theSE. In light of these observations, we propose a heterogeneous oxidation model to explain the high spatial heterogeneity of theSEand coexisting δ13Corgrecords of the Doushantuo, with likely relevance to theSEin other regions. In this model, we infer continued marine redox stratification through theSEbut with increased availability of oxidants (e.g., O2and sulfate) limited to marginal near‐surface marine environments. Oxidation of limited spatiotemporal extent provides a mechanism to drive heterogeneous oxidation of subsurface reduced carbon mostly in shelf areas. Regardless of the mechanism driving theSE, future models must consider the evidence for spatial heterogeneity in δ13C presented in this study.

     
    more » « less