skip to main content


Search for: All records

Creators/Authors contains: "Lyra, Goia M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Interactions between species can influence access to resources and successful reproduction. One possible outcome of such interactions is reproductive character displacement. Here, the similarity of reproductive traits – such as flowering time – among close relatives growing in sympatry differ more so than when growing apart. However, evidence for the overall prevalence and direction of this phenomenon, or the stability of such differences under environmental change, remains untested across large taxonomic and spatial scales. We apply data from tens of thousands of herbarium specimens to examine character displacement in flowering time across 110 animal-pollinated angiosperm species in the eastern USA. We demonstrate that the degree and direction of phenological displacement among co-occurring closely related species pairs varies tremendously. Overall, flowering time displacement in sympatry is not common. However, displacement is generally greater among species pairs that flower close in time, regardless of direction. We additionally identify that future climate change may alter the nature of phenological displacement among many of these species pairs. On average, flowering times of closely related species were predicted to shift further apart by the mid-21st century, which may have significant future consequences for species interactions and gene flow.Competing Interest StatementThe authors have declared no competing interest. 
    more » « less
  2. Summary

    Urbanization can affect the timing of plant reproduction (i.e. flowering and fruiting) and associated ecosystem processes. However, our knowledge of how plant phenology responds to urbanization and its associated environmental changes is limited.

    Herbaria represent an important, but underutilized source of data for investigating this question. We harnessed phenological data from herbarium specimens representing 200 plant species collected across 120 yr from the eastern US to investigate the spatiotemporal effects of urbanization on flowering and fruiting phenology and frost risk (i.e. time between the last frost date and flowering).

    Effects of urbanization on plant reproductive phenology varied significantly in direction and magnitude across species ranges. Increased urbanization led to earlier flowering in colder and wetter regions and delayed fruiting in regions with wetter spring conditions. Frost risk was elevated with increased urbanization in regions with colder and wetter spring conditions.

    Our study demonstrates that predictions of phenological change and its associated impacts must account for both climatic and human effects, which are context dependent and do not necessarily coincide. We must move beyond phenological models that only incorporate temperature variables and consider multiple environmental factors and their interactions when estimating plant phenology, especially at larger spatial and taxonomic scales.

     
    more » « less
  3. Summary

    Interactions between species can influence successful reproduction, resulting in reproductive character displacement, where the similarity of reproductive traits – such as flowering time – among close relatives growing together differ from when growing apart. Evidence for the overall prevalence and direction of this phenomenon, and its stability under environmental change, remains untested across large scales.

    Using the power of crowdsourcing, we gathered phenological information from over 40 000 herbarium specimens, and investigated displacement in flowering time across 110 animal‐pollinated species in the eastern USA.

    Overall, flowering time displacement is not common across large scales. However, displacement is generally greater among species pairs that flower close in time, regardless of direction. Furthermore, with climate change, the flowering times of closely related species are predicted, on average, to shift further apart by the mid‐21stcentury.

    We demonstrate that the degree and direction of phenological displacement among co‐occurring closely related species pairs varies tremendously. However, future climate change may alter the differences in reproductive timing among many of these species pairs, which may have significant consequences for species interactions and gene flow. Our study provides one promising path towards understanding how the phenological landscape is structured and may respond to future environmental change.

     
    more » « less