skip to main content


Search for: All records

Creators/Authors contains: "Maavara, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Lakes are central components of the inland water system distinct from, yet inextricably connected to, river networks. Currently, existing network‐scale biogeochemistry research, although robust, typically treats each of these components separately or reductively. Here, we incorporate lake morphometry into a fully connected stream/lake network for the Connecticut River watershed and model potential evasion of terrestrially sourced headwater CO2as transported through the network, ignoring in‐stream production. We found that approximately 25%–30% of total potential soil CO2evasion occurs in lakes, and percent evasion is inversely related to streamflow. A lake's ability to evade CO2is controlled by residence time and size: most lakes with residence time over 7 days or surface area greater than 0.004 km2evade functionally all terrestrial CO2entering from upstream, precluding further downstream transport. We conclude that lakes are important for soil CO2degassing and that this coupled river/lake approach is promising for CO2studies henceforth.

     
    more » « less
  2. Abstract

    We synthesized N2O emissions over North America using 17 bottom‐up (BU) estimates from 1980–2016 and five top‐down (TD) estimates from 1998 to 2016. The BU‐based total emission shows a slight increase owing to U.S. agriculture, while no consistent trend is shown in TD estimates. During 2007–2016, North American N2O emissions are estimated at 1.7 (1.0–3.0) Tg N yr−1(BU) and 1.3 (0.9–1.5) Tg N yr−1(TD). Anthropogenic emissions were twice as large as natural fluxes from soil and water. Direct agricultural and industrial activities accounted for 68% of total anthropogenic emissions, 71% of which was contributed by the U.S. Our estimates of U.S. agricultural emissions are comparable to the EPA greenhouse gas (GHG) inventory, which includes estimates from IPCC tier 1 (emission factor) and tier 3 (process‐based modeling) approaches. Conversely, our estimated agricultural emissions for Canada and Mexico are twice as large as the respective national GHG inventories.

     
    more » « less