skip to main content


Search for: All records

Creators/Authors contains: "MacLeod, Morgan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A supermassive black hole surrounded by a dense, nuclear star cluster resides at the center of many galaxies. In this dense environment, high-velocity collisions frequently occur between stars. About 10% of the stars within the Milky Way’s nuclear star cluster collide with other stars before evolving off the main sequence. Collisions preferentially affect tightly bound stars, which orbit most quickly and pass through regions of the highest stellar density. Over time, collisions therefore shape the bulk properties of the nuclear star cluster. We examine the effect of collisions on the cluster’s stellar density profile. We show that collisions produce a turning point in the density profile, which can be determined analytically. Varying the initial density profile and collision model, we characterize the evolution of the stellar density profile over 10 Gyr. We find that old, initially cuspy populations exhibit a break around 0.1 pc in their density profile, while shallow density profiles retain their initial shape outside of 0.01 pc. The initial density profile is always preserved outside of a few tenths of a parsec irrespective of initial conditions. We generalize this model to an arbitrary galactic nucleus and show that the location of the collisional break can be simply estimated from the nuclear properties. Lastly, we comment on the implications of collisions for the luminosity and color of stars in the collisionally shaped inner cluster.

     
    more » « less
  2. Abstract

    Atmospheric escape shapes the fate of exoplanets, with statistical evidence for transformative mass loss imprinted across the mass–radius–insolation distribution. Here, we present transit spectroscopy of the highly irradiated, low-gravity, inflated hot Saturn HAT-P-67 b. The Habitable Zone Planet Finder spectra show a detection of up to 10% absorption depth of the 10833 Å helium triplet. The 13.8 hr of on-sky integration time over 39 nights sample the entire planet orbit, uncovering excess helium absorption preceding the transit by up to 130 planetary radii in a large leading tail. This configuration can be understood as the escaping material overflowing its small Roche lobe and advecting most of the gas into the stellar—and not planetary—rest frame, consistent with the Doppler velocity structure seen in the helium line profiles. The prominent leading tail serves as direct evidence for dayside mass loss with a strong day-/nightside asymmetry. We see some transit-to-transit variability in the line profile, consistent with the interplay of stellar and planetary winds. We employ one-dimensional Parker wind models to estimate the mass-loss rate, finding values on the order of 2 × 1013g s−1, with large uncertainties owing to the unknown X-ray and ultraviolet (XUV) flux of the F host star. The large mass loss in HAT-P-67 b represents a valuable example of an inflated hot Saturn, a class of planets recently identified to be rare, as their atmospheres are predicted to evaporate quickly. We contrast two physical mechanisms for runaway evaporation: ohmic dissipation and XUV irradiation, slightly favoring the latter.

     
    more » « less
  3. Abstract

    The engulfment of substellar bodies (SBs), such as brown dwarfs and planets, by giant stars is a possible explanation for rapidly rotating giants, lithium-rich giants, and the presence of SBs in close orbits around subdwarfs and white dwarfs. We perform three-dimensional hydrodynamical simulations of the flow in the vicinity of an engulfed SB. We model the SB as a rigid body with a reflective surface because it cannot accrete. This reflective boundary changes the flow morphology to resemble that of engulfed compact objects with outflows. We measure the drag coefficients for the ram-pressure and gravitational drag forces acting on the SB, and use them to integrate its trajectory inside the star. We find that engulfment can increase the luminosity of a 1Mstar by up to a few orders of magnitude. The time for the star to return to its original luminosity is up to a few thousand years when the star has evolved to ≈10Rand up to a few decades at the tip of the red giant branch (RGB). No SBs can eject the envelope of a 1Mstar before it evolves to ≈10Rif the orbit of the SB is the only energy source contributing to the ejection. In contrast, SBs as small as ≈10MJupcan eject the envelope at the tip of the RGB. The numerical framework we introduce here can be used to study planetary engulfment in a simplified setting that captures the physics of the flow at the scale of the SB.

     
    more » « less
  4. Long-baseline monitoring of the HAT-P-32Ab system reveals helium escaping through tidal tails 50 times the size of the planet. 
    more » « less
    Free, publicly-accessible full text available June 9, 2024
  5. Abstract

    We discuss the central role that dust condensation plays in shaping the observational appearance of outflows from coalescing binary systems. As binaries begin to coalesce, they shock-heat and expel material into their surroundings. Depending on the properties of the merging system, this material can expand to the point where molecules and dust form, dramatically increasing the gas opacity. We use the existing population of luminous red novae to constrain the thermodynamics of these ejecta, then apply our findings to the progressive obscuration of merging systems in the lead up to their coalescence. Compact progenitor stars near the main sequence or in the Hertzsprung gap along with massive progenitor stars have sufficiently hot circumstellar material to remain unobscured by dust. By contrast, more extended, low-mass giants should become completely optically obscured by dust formation in the circumbinary environment. We predict that 30%–50% of stellar-coalescence transients for solar-mass stars will be dusty, infrared-luminous sources. Of these, the optical transients may selectively trace complete merger outcomes while the infrared transients trace common envelope ejection outcomes.

     
    more » « less
  6. Abstract

    The evolution of many close binary and multiple star systems is defined by phases of mass exchange and interaction. As these systems evolve into contact, tidal dissipation is not always sufficient to bring them into circular, synchronous orbits. In these cases, encounters of increasing strength occur while the orbit remains eccentric. This paper focuses on the outcomes of close tidal passages in eccentric orbits. Close eccentric passages excite dynamical oscillations about the stars’ equilibrium configurations. These tidal oscillations arise from the transfer of orbital energy into oscillation mode energy. When these oscillations reach sufficient amplitude, they break near the stellar surface. The surface wave-breaking layer forms a shock-heated atmosphere that surrounds the object. The continuing oscillations in the star’s interior launch shocks that dissipate into the atmosphere, damping the tidal oscillations. We show that the rapid, nonlinear dissipation associated with the wave breaking of fundamental oscillation modes therefore comes with coupled mass loss to the wave-breaking atmosphere. The mass ratio is an important characteristic that defines the relative importance of mass loss and energy dissipation and therefore determines the fate of systems evolving under the influence of nonlinear dissipation. The outcome can be rapid tidal circularization (q≪ 1) or runaway mass exchange (q≫ 1).

     
    more » « less
  7. ABSTRACT

    The detection of the binary black hole merger GW190521, with primary black hole mass $85^{+21}_{-14} {\rm M}_{\odot }$, proved the existence of black holes in the theoretically predicted pair-instability gap ($\sim 60-120 \, {\rm M}_{\odot }$) of their mass spectrum. Some recent studies suggest that such massive black holes could be produced by the collision of an evolved star with a carbon–oxygen core and a main sequence star. Such a post-coalescence star could end its life avoiding the pair-instability regime and with a direct collapse of its very massive envelope. It is still not clear, however, how the collision shapes the structure of the newly produced star and how much mass is actually lost in the impact. We investigated this issue by means of hydrodynamical simulations with the smoothed particle hydrodynamics code StarSmasher, finding that a head-on collision can remove up to 12 per cent of the initial mass of the colliding stars. This is a non-negligible percentage of the initial mass and could affect the further evolution of the stellar remnant, particularly in terms of the final mass of a possibly forming black hole. We also found that the main sequence star can plunge down to the outer boundary of the core of the primary, changing the inner chemical composition of the remnant. The collision expels the outer layers of the primary, leaving a remnant with an helium-enriched envelope (reaching He fractions of about 0.4 at the surface). These more complex abundance profiles can be directly used in stellar evolution simulations of the collision product.

     
    more » « less
  8. ABSTRACT

    We analyse how drag forces modify the orbits of objects moving through extended gaseous distributions. We consider how hydrodynamic (surface area) drag forces and dynamical friction (gravitational) drag forces drive the evolution of orbital eccentricity. While hydrodynamic drag forces cause eccentric orbits to become more circular, dynamical friction drag can cause orbits to become more eccentric. We develop a semi-analytic model that accurately predicts these changes by comparing the total work and torque applied to the orbit at periapse and apoapse. We use a toy model of a radial power-law density profile, ρ ∝ r−γ, to determine that there is a critical γ = 3 power index, which separates the eccentricity evolution in dynamical friction: orbits become more eccentric for γ < 3 and circularize for γ > 3. We apply these findings to the infall of a Jupiter-like planet into the envelope of its host star. The hydrostatic envelopes of stars are defined by steep density gradients near the limb and shallower gradients in the interior. Under the influence of gaseous dynamical friction, an infalling object’s orbit will first decrease in eccentricity and then increase. The critical separation that delineates these regimes is predicted by the local density slope and is linearly dependent on polytropic index. More broadly, our findings indicate that binary systems may routinely emerge from common envelope phases with non-zero eccentricities that were excited by the dynamical friction forces that drove their orbital tightening.

     
    more » « less
  9. We discuss the central role that dust condensation plays in shaping the observational appearance of outflows from coalescing binary systems. As binaries enter into a common envelope phase or merger, they shock-heat and expel material into their surroundings. Depending on the properties of the merging system, this material can expand to the point where molecules and dust form, dramatically increasing the gas opacity. We use the existing population of Luminous Red Novae (LRNe) to constrain the thermodynamics of these ejecta, then apply our findings to the progressive obscuration of merging systems in the lead in to their coalescence. Compact progenitor stars near the main sequence or in the Hertzsprung gap along with massive progenitor stars have sufficiently hot circumstellar material to remain unobscured by dust. By contrast, more extended, low-mass giants should become completely optically obscured by dust formation in the circumbinary environment. We predict that approximately half of stellar merger and common envelope transients for solar-mass stars will be dusty, infrared-luminous sources. The dusty, infrared transients will selectively trace the population of systems that may successfully eject their common envelopes, while the unobscured, optical transients correspond to the LRNe population of stellar mergers. 
    more » « less
  10. The detection of the binary black hole merger GW190521, with primary mass 85+21−14 M⊙ , proved the existence of black holes in the theoretically predicted pair-instability gap ( ∼60−120M⊙ ) of their mass spectrum. Some recent studies suggest that such massive black holes could be produced by the collision of an evolved star with a carbon-oxygen core and a main sequence star. Such a post-coalescence star could end its life avoiding the pair-instability regime and with a direct collapse of its very massive envelope. It is still not clear, however, how the collision shapes the structure of the newly produced star and how much mass is actually lost in the impact. We investigated this issue by means of hydrodynamical simulations with the smoothed particle hydrodynamics code StarSmasher, finding that a head-on collision can remove up to 12% of the initial mass of the colliding stars. This is a non-negligible percentage of the initial mass and could affect the further evolution of the stellar remnant, particularly in terms of the final mass of a possibly forming black hole. We also found that the main sequence star can plunge down to the outer boundary of the carbon-oxygen core of the primary, changing the inner chemical composition of the remnant. The collision expels the outer layers of the primary, leaving a remnant with an helium-enriched envelope (reaching He fractions of about 0.4 at the surface). These more complex abundance profiles can be directly used in stellar evolution simulations of the collision product. 
    more » « less